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Abstract
We define a notion of Morse function and establish Morse Theory-like theorems over a class

of compact subsets of Euclidean spaces verifying weak regularity assumptions. Our approach
involves non-smooth analysis over Lipschitz functions and the µ-reach of a set, which is a
quantity used in geometric inference to study non-smooth, non convex subsets of a Euclidean
space. This paper adds to previous works that were able to define Morse functions for several
classes of subsets of Euclidean spaces such as submanifolds, Whitney-Stratified sets and sets
with positive reach. Our conditions are the positiveness of the µ-reach of our sets and of the
reach of their complement sets, as well as the full-dimensionality of their tangent cones. In
particular, we prove that this class is vast among tubular neighborhoods as it notably contains
all but a finite number of offsets of any subanalytic sets, or any small offset of a compact set
with positive µ-reach.

1 Introduction
In his celebrated book Morse Theory [1], Milnor describes how the changes in topology of the
closed sublevel sets Xc := f−1(−∞, c] when c increases can be derived from f : X → R when
X is a compact C2 manifold and f is smooth and sufficiently generic. Such generic functions
are called Morse Functions. In this setting, Milnor shows that topological changes only happen
around a finite number of values called critical values determined by the values the function f
takes at the critical points, which are the points where the differential of f vanishes. Around a
critical point x with critical value c = f(x), the topology of the sublevel sets Xc+ε is obtained
from Xc−ε by gluing a cell around x when ε is small enough.

A smooth function f : X → R is said to be Morse when its Hessian is non-degenerate at every
critical point. In this case the previous considerations can be summarized by the two fundamental
results of Morse Theory, which we call Morse Theorems:

• Let a < b ∈ R. If [a, b] does not contain any critical value of f , Xa has the same homotopy
type as Xb. This is the Constant homotopy type Lemma.

• Around a critical value c of f , the homotopy type of Xc+ε is obtained from Xc−ε by gluing
a λi cell around each critical point xi ∈ f−1(c), when ε is small enough. This is the Handle
attachment Lemma.

Morse functions are plentiful: for any manifold X embedded in a Euclidean space Rd, the functions
d{x}|X is Morse for Hd-almost all x, and the height functions x 7→ ⟨x, v⟩ restricted to X are Morse
for Hd−1-almost all v ∈ Sd−1 [1]. Moreover, "almost all" functions are Morse in the Whitney
topology on X, as the set they form is dense and open.

The aim of this article is to extend the class of sets X and the definition of Morse functions
for which the Morse theorems stand. A recent work from Monod, Song, Kim [2] showed that for
a generic surface S ⊂ R3, the Morse Theorems are verified for f = dS the distance to S when X
is a submanifold.

When f is smooth, Fu [3] narrowed the assumptions to any set X with C1,1 boundary and
more generally to sets with positive reach. His reasoning is the main inspiration for the present
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article, as we adapt his proofs using non-smooth analysis to different regularity assumptions on
X, namely requiring that X has a positive µ-reach for some µ ∈ (0, 1], that its complement set
¬X := Rd \ X has a positive reach, and that its tangent cones have full-dimensionality. All these
notions are described in Section 2.1. In particular the class of compact sets of Rd verifying all
those assumptions encompasses almost any tubular neighborhood of subanalytic sets or small
offsets of sets with positive µ-reach.

Here is the major result of this paper formulated informally.

Theorem 1.1: Informal Generalized Morse Theory

Let X ⊂ Rd be such that reachµ(X) > 0 and reach(¬X) > 0 for a certain µ ∈ (0, 1]. Let
f : Rd → R be a smooth function such that f|X admits only non degenerate critical points.

Then for every regular value c of f|X , Xc := X ∩ f−1(−∞, c] has the homotopy type of
a CW-complex with extra cells added independently in the sense of persistence theory at
critical values, whose dimension depend explicitly on the curvatures of X.

Outline
In Section 2 we define the objects used throughout this article.

• In Section 2.1 we define and illustrate the basic tools of our study. This includes the
reachµ and the reach of a compact subset of Rd, Clarke gradients of locally lipschitz
functions,normal and tangent cones of an object with positive reach.

• In Section 2.2 we define the unit Normal Bundle of a set with positive reach and derive
some of its geometric properties.

• Section 2.3 recalls definitions and notations of critical points and Hessian for a restricted
function f|X for sets with positive reach from Fu [3].

• Section 2.4 focuses on properties of locally Lipschitz functions for non-smooth analysis. We
build a retraction between sublevel sets of such functions assuming their Clarke gradient
stays away from zero.

• In Section 2.5 we establish a fundamental link between the Normal Bundle of a set X and
the Clarke gradient of its distance function dX . This crucial step allows us to use results
from non-smooth analysis on assumptions about critical points of f|X .

Section 3 articulates the previous results to establish the main theorem.

• In Section 3.1 we describe the regularity conditions we impose on X to prove Morse Theory
results.

• In Section 3.2 we describe how to build a function fr,c such that (X−r, fr,c) are smooth
surrogates for (X, f) in the sense that the smooth sublevel sets X−r

c and Xc have the same
homotopy type when c is a regular value and r is small enough. To that end we consider
some locally Lipschitz functions and prove that they verify the assumptions needed in the
theorems of Section 2.4. The retractions obtained are used to build a homotopy equivalence.

• In Section 3.3 we show that in between critical values, the topology of sublevel sets stays
constant. This is done by applying Section 2.4 using computations from the previous section.
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• Section 3.4 describes the topological changes happening around a critical value as long as
it has only one corresponding critical point which is non-degenerate. We adapt the proof
from Fu [3] to our setting, circumventing the problem of considering sets with reach 0 using
non-smooth analysis.

• Section 3.5 describes topological changes around a critical value admitting several critical
points that are all non-degenerate.

2 Definitions and useful lemmas

2.1 Preliminaries

• Throughout this paper, the complement set of a closed set X ⊂ Rd will denote ¬X = Rd \ X
the closure of the classical complement set.

• Let A be a subset of Rd. It distance function is dA : x 7→ inf{||x − a|| | a ∈ A}. Any such
function is 1-Lipschitz and thus differentiable almost everywhere. For any positive r and X
subset of Rd, define the r and −r tubular neighborhoods of X (see Figure 2) as follows:

Xr := {x ∈ Rd | dX(x) ≤ r}
X−r := {x ∈ Rd | d¬X(x) ≥ r}

The Hausdorff Distance between two subsets A, B of Rd is the infimum of the t ∈ R such
that B ⊂ At and A ⊂ Bt. This distance yields a topology on the set of compact subsets of
Rd.

• A Cone A in Rd is a set stable under multiplication by a positive number, i.e for all λ > 0,
we have λA ⊂ A. Given any B ⊂ Rd, denote Cone B the smallest cone containing B,
defined as the image of [0, ∞) × B by the map (λ, x) 7→ λx. In the same vein, denote
Conv B the convex hull of B to be the smallest convex set containing B, consisting in all
convex combinations of elements of B. A Convex cone is a subset of Rd which is both a
cone and convex. The dimension of a cone or a convex set is the dimension of the vector
space it spans. Given any set B ⊂ Rd, its polar cone or dual cone Bo is the convex cone of
Rd defined by :

Bo = {u ∈ Rd | ⟨u, b⟩ ≤ 0 ∀ b ∈ B}.

The polar cone operation is idempotent on convex cones, as it notably verifies the following
identity :

(Bo)o = Conv (Cone B) .

• Given a subset X of Rd, define its distance to 0 as

d0(X) := inf {||x|| | x ∈ X} .

It measures how far X is from intersecting {0}.

• Given a function f : Rd → R locally Lipschitz, define ∂*f(x) its Clarke Gradient at x as
the convex hull of limits of the form limh→0 ∇f(x + h) - see Section 2.4. In particular, if
f = dX and if x lies outside of X, − ∂*dX(x) is the convex hull of the directions to the
points z ∈ X such that dX(x) = ||x − z||.

∂*dX(x) := Conv
({

x − z

||x − z||
| z ∈ ΓX(x)

})
where such z form the set ΓX(x) of closest points to x in X (cf Figure 1, right). Elements
of ΓX(x) will be denoted by the letter ξ. In particular, we denote ξX(x) the closest point
to x in X when ΓX(x) is a singleton.
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Figure 1: Offsets of X and Clarke gradient of dX outside of X.

• Given µ in (0, 1], define the µ-reach of a subset X of Rd:

reachµ(X) := sup
({

s ∈ R| dX(x) ≤ s =⇒ d0(∂*dX(x)) ≥ µ
})

(2.1)

Having reachµ(X) > 0 means that in a certain neighborhood of X, the angles between two
closest point in X cannot be too flat. The lower the µ, the flatter allowed. Note that this
definition coincides with the classical one found in geometric inference as d0(∂*dX(x)) is
exactly the norm of the generalized gradient ∇dX(x) defined by Lieutier in [4].
Throughout this article, when no value of µ has been fixed, for any closed X ⊂ Rd, having
a positive µ-reach means that there is a certain µ ∈ (0, 1] with reachµ(X) > 0. This class of
sets is certainly broad, intuitively containing stratified sets whose corners are not infinitely
pointy. A corollary from Lemma 1.6 in Fu [5] is that for any subanalytic set X ⊂ Rd, the
set of value r > 0 such that Xr has not a positive µ-reach is finite.

• The reach of a subset of Rd is a quantity first studied by Federer in [6] coinciding with
reach1. It is the largest number t such that dX(x) < t implies that x has a unique closest
point in X. The class of sets with positive reach have been studied for a long time - see [?]
for a broad overview. This class notably contains convex sets and submanifolds of Euclidean
spaces.
When X has a positive reachµ the complement sets of small offsets of X have positive reach.

Theorem 2.1: Reach of complement of offsets (Chazal et al. [7], 4.1)

Let X be compact subset of Rd, µ ∈ (0, 1] and 0 < r < reachµ(X).
Then reach(¬(Xr)) ≥ µr.

• The Tangent Cone of X at x, Tan(X, x) is defined as the cone generated by the limits
limn→∞

xn−x
||xn−x|| , where the sequence (xn)n∈N belongs in X, tends to x and never takes the

value x. In that case, we say that u is represented by the sequence (xn)n∈N.
When X ⊂ Rd has positive reach, Tan(X, x) is a convex cone which can be characterized
as follows for any x ∈ X:

Tan(X, x) =
{

u ∈ Rd | lim
t→0+

dX(x + tu)
t

= 0
}
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Figure 2: Sets with particular reachµ.

• When X has positive reach, define Nor(X, x) its normal cone at x as the set dual to the
tangent cone at x:

Nor(X, x) := Tan(X, x)o.

It is related to the projection to the closest point in X function ξX by the following
characterisation, for any 0 < t < reach(X):

Nor(X, x) ∩ Sd−1 =
{

u ∈ Sd−1 | ξX(x + tu) = x
}

Figure 3: Tangent and Normal cones of X at x
when reach(X) > 0

Figure 4: Some unit normal cones (in red) when
0 < r < reach(X)

• If X ⊂ Rd has positive reach, we say that X is full dimensional when every Tan(X, x) has
dimension d for every x ∈ ∂X, which is characterized by the following condition on the
normal cones:

(x, n) ∈ ∂X × Nor(X, x) =⇒ −n /∈ Nor(X, x)

2.2 Normal bundles

We are now in position to define the normal bundle of sets with positive reach or whose complement
sets have positive reach.
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Definition 2.2: Normal cones and normal bundles

• When ¬X has positive reach, define its normal cone at x via:

Nor(X, x) := − Nor(¬X, x)

This definition is consistent when both ¬X and X have positive reach.

• In case X or ¬X has positive reach, its unit normal bundle is defined as follows:

Nor(X) :=
⋃

x∈∂X

{x} × (Nor(X, x) ∩ Sd−1)

• A pair (x, n) ∈ Nor(X) is said to be regular when Tan(Nor(X), (x, n)) is a (d − 1)
dimensional vector space.

Proposition 2.3: Almost all pairs of Nor(X) are regular

When either X or ¬X has positive reach,

• Nor(X) is a (d − 1)-lipschitz submanifold of Rd × Sd−1;

• Pairs (x, n) ∈ Nor(X) are regular Hd−1-almost everywhere, where Hd−1 is the (d−1)-
Hausdorff measure on Rd × Sd−1.

Proof. Assume reach(X) > 0 and let 0 < r < reach(X). The map Nor(X) → ∂Xr, (x, n) 7→
(x + rn) is bilipschitz and ∂X is a C1(d − 1) submanifold of Rd by the implicit function theorem.
Else, let 0 < r < reach(¬X). The map Nor(X) → ∂X−r, (x, n) 7→ (x + rn) is bilipschitz and the
same reasoning stands.

Figure 5: Normal Bundle of X with reach(X) > 0 Figure 6: Normal Bundle of ¬X with reach(X) > 0

The construction of Nor(X) stems from the more general concept of normal cycle of a set
[8, 5]. While we do not need to write our hypothesis using this more involved language, in our
case the normal bundle is the support of a (d−1) Legendrian cycle over Rd ×Sd−1, whose tangent
spaces’ structure is already known.

Proposition 2.4: Tangent spaces of Normal Bundles (Rataj & Zähle, 2019 [9])

Let X be a compact set admitting a normal bundle Nor(X).
Then for any regular pair (x, n) ∈ Nor(X), there exist

• A family κ1, . . . , κd−1 in R ∪ {∞} called principal curvatures at (x, n)

• A family b1, . . . , bd−1 ∈ Rd of vectors orthogonal to n called principal directions at
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(x, n) such that the family
(

1√
1+κi

2 bi,
κi√
1+κ2

i

bi

)
1≤i≤d−1

form an orthonormal basis

of Tan(Nor(X), (x, n)).

Moreover,

• Principal curvatures are unique up to permutations.

• Principal directions bi associated to κi are unique up to the determination of an
orthonormal basis of ker(u, v 7→ u − κiv) if κi < ∞, or ker(u, v 7→ v) if κi = ∞.

These principal curvatures coincide with the ones found in differential geometry as eigenvalues
of the second fundamental form. Indeed, assume that X ⊂ Rd is bounded by a C1,1-hypersurface,
i.e the boundary of X is an hypersurface such that the Gauss map x ∈ ∂X 7→ n(x) ∈ Sd−1 is
Lipschitz. The pair (x, n(x)) ∈ Nor(X) is regular if and only if n is differentiable at x [3]. In that
case, its differential is symmetric and its eigenvalues counted with multiplicity (resp. orthonormal
basis of eigenvectors) are principal curvatures (resp. principal directions) at (x, n(x)).

2.3 Critical points and Hessians for f|X

In the paper Curvature measures and Generalized Morse Theory [3], Fu defines a notion of Morse
Functions over sets of positive reach and prove the Morse theorems for them. The part of this
paper focusing on generalized Morse theory forms a basis of our reasoning in Section 3. We will
use the same definitions of critical points and hessians, which we now recall. The projection
Rd × Rd → Rd onto the first factor is denoted π0.

Definition 2.5: Critical points and Hessian

Let f : Rd → R be smooth and X be a set of Rd admitting a normal bundle.

• Let (x, n) ∈ ∂X × Sd−1 be regular as in Proposition 2.4. Take (bi) an orthonormal
basis of π0(Tan(Nor(X), X, (x, n))) consisting of all principal directions with finite
associated curvatures. The second fundamental form IIx,n is defined as the bilinear
form on π0(Tan(Nor(X), (x, n))) such that:

IIx,n(bi, bj) := κiδi,j (2.2)

which generalizes the classical fundamental form obtained when X has a smooth
boundary.

• x ∈ X is a critical point of f|X when ∇f(x) ∈ Nor(X, x)

• c ∈ R is a critical value of f|X when f−1(c) contains at least a critical point of f|X .
Otherwise, c is a regular value of f|X .

• If x is a critical point of f|X with ∇f(x) ̸= 0, put n = −∇f(x)
||∇f(x)|| .

If (x, n) is regular, the Hessian of f|X at x is defined as a bilinear form over
π0(Tan(NX , (x, n))):

Hf|X(x)(u, v) := Hf(x)(u, v) + ||∇f(x)|| IIx,n(u, v)

• The index of this Hessian is the dimension of the largest subspace on which Hf|X is
negative definite.
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• We say that a critical point x of f|X is non-degenerate when ∇f(x) ̸= 0, (x, n) is a
regular pair of Nor(X) and its Hessian Hf|X(x) is not degenerate.

• f|X is said to be Morse when its critical points are non-degenerate.

Using these definitions, Fu proved the Morse Theorems for sets with positive reach.

Theorem 2.6: Generalized Morse Theory for sets with positive reach (Fu, 1989)

Let X be a compact subset of Rd with positive reach and let f : Rd → R be a smooth
function such that f|X is Morse with at most one critical value per level set.

Then for any regular value c ∈ R, Xc has the homotopy type of a CW -Complex with one
λp cell for each critical point p such that f(p) < c, where

λp = Index of Hf|X at p

2.4 Clarke gradients and approximate flows

Let ϕ : Rd → R be a locally Lipschitz function. It is differentiable almost everywhere thanks to
Rademacher’s Theorem. Consider ∂*ϕ(x) its Clarke gradient at x. It is a subset of Rd generalizing
the gradient of ϕ defined as the convex hull of limits of the form ∇ϕ(x+h), h → 0. A key property
of Clarke Gradients is its upper semicontinuity, leading to the following proposition.

Proposition 2.7: Semicontinuity Clarke Gradients

Let ϕ : Rd → R be a locally Lipschitz function.
If a sequence (xi)i∈N converges to x, we have

lim inf
i→∞

d0
(
∂*ϕ(xi)

)
≥ d0

(
∂*ϕ(x)

)

Assuming ∂*ϕ(x) stays uniformly away from 0, we are able to build deformation retractions
between the sublevel sets of ϕ using approximations of what would be the flow of −ϕ had it been
smooth.

Proposition 2.8: Approximate flow of a Lipschitz function

Let a < b ∈ R. Let ϕ : Rd → R be a locally Lipschitz function lipschitz on ϕ−1(a, b].
Assume that

inf {d0(∂*ϕ(x)), x ∈ ϕ−1(a, b]} = µ > 0

. Then for every ε > 0, there exists a continuous function

Cϕ :
{

[0, 1] × ϕ−1(]∞, b]) → ϕ−1(] − ∞, b])
(t, x) 7→ Cϕ(t, x)

such that

• For any s > t and x such that C(s, x) ∈ ϕ−1(a, b], we have

ϕ(Cϕ(s, x)) − ϕ(Cϕ(t, x)) ≤ −(s − t)(b − a)
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• For any t ∈ [0, 1], x ∈ ϕ−1(∞, a], Cϕ(t, x) = x

• For any x ∈ ϕ−1(−∞, b], the map s 7→ Cϕ(s, x) is b−a
µ−ε -lipschitz.

In particular, Cϕ(1, ·) is a deformation retraction between ϕ−1(−∞, a] and ϕ−1(−∞, b].

Proof. This proposition is the main statement in section D of [10] where the constants have been
optimized and generalized to lipschitz functions instead of distance functions. For the sake of
completeness, we write the full proof. Let ε > 0. Let x ∈ ϕ−1(a, b] and take by semicontinuity of
the Clarke gradients Bx an open ball centered in x such that ∂*ϕ(y) ⊂ ∂*ϕ(x)ε for any y ∈ Bx.
Since ∂*ϕ(x) is a closed convex set, put W (x) the vector in ∂*ϕ(x) realising ||W (x)|| = d0(∂*ϕ(x))
- that is, the closest point to 0 in ∂*ϕ(x). By convexity,

∀u ∈ ∂*ϕ(x), ⟨u, W (x)⟩ ≥ ||W (x)||2 . (2.3)

The family {Bx}x∈ϕ−1(a,b] is an open covering of ϕ−1(a, b]. Thanks to paracompactness, there
exists a locally finite partition of unity (ρi)i∈I subordinate to this family. The support of each ρi

has to be included in some B(xi), where xi ∈ ϕ−1(a, b].
Define the vector field V as a smooth interpolation of normalized −W :

V (y) := −
∑
i∈I

ρi(y) W (xi)
||W (xi)||

(2.4)

Obviously ||V (x)|| ≤ 1. Now by classical results write C the flow of V defined on a maximal open
domain D in ϕ−1(a, b] × R+. For any x ∈ ϕ−1(a, b] and any ζ ∈ ∂*ϕ(x), we have:

⟨Ċx(0), ζ⟩ ≤ −
∑

i

ρi(||W (xi)|| − ε) ≤ −µ + ε (2.5)

Define Dx by
(
{x} × R+) ∩ D = {x} × Dx the maximal subset of R for which the flow starting

at x is defined. The set Dx is connected in R+ and we put sx = supDx. Now the trajectory
C(·, x) is 1-lipschitz, meaning the curve s 7→ C(s, x) is rectifiable. We can thus define C(sx, x) =
lims→s−

x
C(s, x) as the endpoint of this curve. The function ϕ(C(·, x)) : Dx → [a, b] is lipschitz

and thus differentiable almost everywhere. Without loss of generality we can assume that it is
differentiable at 0. Since C(·, x) has non-vanishing gradient V (x) at 0, ϕ admits a directional
derivative ϕ′(x, V (x)) in direction V (x). Now the work of Clarke [11] states that when the
directional derivative exists, the Clarke gradients acts like a maxing support set, that is:

ϕ′(x, V (x)) ≤ max
{

⟨ζ, V (x)⟩ | ζ ∈ ∂*ϕ(x)
}

≤ −µ + ε (2.6)

Any lipschitz function is absolutely continuous, thus when s, t ∈ Dx and t ≤ s, integrating the
previous inequality, we obtain:

ϕ(C(s, x)) − ϕ(C(t, x)) ≤ −(µ − ε)(s − t) (2.7)

This yields ϕ(C(sx, x)) = a and sx ≤ b−a
µ−ε for all x ∈ ϕ−1(a, b]. We extend the flow to ϕ−1(−∞, b]×

R+ by putting

C(t, x) :=
{

C(min(t, sx), x) when a < ϕ(x) ≤ b,
x else.

It remains to show that C is continuous at every point (x, s) ∈ ϕ−1(−∞, b] × R+. Let K be
a Lipschitz constant for ϕ over ϕ−1(a, b]. Assume s ≥ sx. Let c > 0. For every δ > 0, there
exists ρx(δ) > 0 such that for all (y, t) ∈ B(x, ρx(δ)) × [0, sx − x], we have both (y, t) ∈ D and
|ϕ(y, t) − ϕ(x, t)| ≤ δ. Notably this implies sy > sx − c and ϕ(C(y, sx − c)) ≤ a + δ + kc, which
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yields sy ≤ sx − c + kc+δ
µ−ε . And finally, for any (y, t) such that |s − t| ≤ c and ||y − x|| ≤ ρx(δ),

we have:
||C(y, t) − C(x, s)|| ≤

||C(y, min(t, sy)) − C(x, sx − c)|| + ||C(y, sx − c) − C(x, sx − x)|| + ||C(x, sx, −c) − C(x, sx)||

≤ δ+kc
µ−ε + δ + c

Now if ϕ(x) < a, C is locally constant around (x, s) for any s ≥ 0. Finally, if ϕ(x) = a, the function
z 7→ max(a, ϕ(z)) is K-lipschitz and we thus have ϕ(y) > a =⇒ |ϕ(x) − ϕ(y)| ≤ k ||x − y|| which
means that sy ≤ k||x−y||

µ−ε and finally

||C(y, s) − C(x, s)|| ≤ ||C(y, s) − y|| + ||y − x|| ≤
(

k

µ − ε
+ 1

)
||x − y||

Finally we reparametrize C to obtain Cϕ(t, x) = C
(

(b−a)t
µ−ε , x

)
which yields an homotopy such

that ϕ−1(−∞, a] is a strong deformation retraction of ϕ−1(−∞, b].

2.5 Relating the Normal Cones to Clarke Gradients of distance functions

The normal bundle of X is related to dX in the following fashion.

Theorem 2.9: Normal cones and the Clarke gradient of the distance function

Let X ⊂ Rd be such that reach(¬X) > 0 and full dimensional. Let x ∈ ∂X.
Then the normal cone of X at x is determined by the Clarke gradient of dX at x:

Nor(X, x) = Cone ∂*dX(x)

Proof. Let reach(¬X) > r > 0. First remark that

∂*dX−r (x) = − Conv
{

x − z

||x − z||
, z ∈ X−r with d−r

X (x) = ||z − x||
}

= − Conv{u ∈ Sd−1, d¬X(x + ru) = r})

= − Conv
(
Nor(¬X, x) ∩ Sd−1

)
On the other hand by definition, the Clarke gradient of dX−r at x is determined locally by the
gradients around x in every direction:

∂*dX−r (x) = Conv
{

lim ∇dX−r (xi) | (xi) ∈ (Rd)N converging to x
}

Now compare to the Clarke Gradient of dX for which the gradient contributing only come from
directions outside of X (cf. [11], 2.5):

∂*dX(x) = Conv{0, lim ∇dX(xi) | (xi) ∈ (Rd)N converging to x such that for all i, dX(xi) > 0 }

Note that in both definition we implictly require xi to be points where dX is differentiable. On
those points the gradients of dX and dX−r coincide, yielding

Cone ∂*dX(x) ⊂ − Nor(¬X, x). (2.8)

The other inclusion − Nor(¬X, x) ⊂ Cone ∂*dX(x) is Lemma 2.13 whose proof will be the
remainder of this subsection. We will prove the opposite inclusion on their polar cones, that is

∂*dX(x)o ⊂ − Nor(¬X, x)o = − Tan(¬X, x). (2.9)
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Lemma 2.10: Tangent cone stability under addition with ∂*dX(x)

Let X ⊂ Rd and x ∈ ∂X. Let u ∈ ∂*dX(x)o, Then for all h ∈ Tan(X, x), u+h ∈ Tan(X, x).

Proof. We use Clarke’s [11] characterization of the dual cone to the Clarke gradient:

∂*dX(x)o =

u | lim
xh→x
xh∈X

lim
δ→0+

1
δ

dX(xh + δu) = 0

 (2.10)

Consider the following modulus of continuity:

ωu(ε, λ) := sup
xh∈X

||x−xh||≤ε

sup
0<δ≤λ

dX(xh + δu)
δ

When u belongs ∂*dX(x)o, Clarke’s characterization 2.10 implies that ωu(ε, δ) → 0 as ε, δ → 0.
Now take a sequence xi → x representing any h ∈ Tan(∂X, x). Put εi = ||x − xi|| and consider

the sequence xi + εiu. Take ξi in ΓX(xi + εiu):

||ξi − xi − εiu|| = dX(xi + εiu) ≤ εiω(εi, εi)

Thus we can write

ξi − x = εi(h + o(1) + u + O(ω(εi, εi))) = εi(u + h + o(1))

showing that ξi is a sequence in X representing u + h.

Lemma 2.11: Intersection of complement tangent spaces

Let X ⊂ Rd. Then
Tan(∂X, x) = Tan(X, x) ∩ Tan(¬X, x)

Proof. We have to prove that Tan(X, x) ∩ Tan(¬X, x) is included in Tan(∂X, x).
Let u ∈ Tan(X, x) ∩ Tan(¬X, x) be of norm 1. Take a sequence xn (resp. ¬xn) in X (resp.

¬X) representing u, i.e such that

xn = x + ||xn − x|| (u + o(1) )
¬xn = x + ||¬xn − x|| (u + o(1) ).

The segment [xn,¬ xn] has to intersect ∂X, which means that there exists a λn ∈ [0, 1] such that
∂xn = λnxn + (1 − λn)¬xn belongs in ∂X. This yields

∂xn − x = (λn ||xn − x|| + (1 − λn) ||¬xn − x|| ) (u + o(1) )
= ||∂xn − x|| (u + o(1) )

meaning that u is represented by a sequence in ∂X.

Lemma 2.12: Complement tangent cone are tangent cone of complement

Let X ⊂ Rd be a closed set such that either X or ¬X has positive reach and let x ∈ ∂X.
We have

¬ Tan(¬X, x) = Tan(X, x)

11



Proof. Without loss of generality, assume reach(¬X) > 0. Since Tan(X, x) ∪ Tan(¬X, x) = Rd,
we know that ¬ Tan(¬X, x) ⊂ Tan(X, x). We will show the opposite inclusion by proving that
Tan(X, x) ∩ int(Tan(¬X, x)) = ∅.

Let u ∈ Tan(X, x) ∩ int(Tan(¬X, x)). Then it belongs in Tan(∂X, x) by Lemma 2.11. Take
a sequence xn ∈ ∂X such that xn−x

||xn−x|| → u. Take a sequence vn ∈ Nor(¬X, xn). Fix a λ ∈
(0, reach(¬X)). We have

int(B(xn + λvn, λ)) ∩¬ X = ∅ (2.11)

Since u ∈ int(Tan(¬X, x)), there exists a λ′ ∈ (0, λ) such that for any n large enough

xn − x

||xn − x||
+ λ′vn ∈ Tan(¬X, x)

Consider for any such n a sequence (ym,n)m∈N ∈¬ X representing the previous vector. We will
now prove that ym,n cannot be in ¬X for large m, n as it represents a infinitesimal version of
vector of ∂X shifted in a direction normal to X. We can write

ym,n = x + ||ym,n − x||
(

xn − x

||xn − x||
+ λ′vn + ωm,n

)
with ωm,n →m→∞ 0 for every n.

∣∣∣∣ym,n − xn − λ′vn

∣∣∣∣ =
∣∣∣∣∣∣∣∣(λ − λ′)vn + (xn − x)(1 − ||ym,n − x||

||xn − x||

)
+ ||ym,n − x|| ωm,n

∣∣∣∣∣∣∣∣
≤(λ − λ′) + ||xn − x|| + ||ym,n − x|| (ωm,n − 1)

The last quantity is strictly smaller than λ for m, n large enough, contradicting 2.11.

Lemma 2.13: Relationship between normal cones and Clarke Gradients

Let X ⊂ Rd such that reach(¬X) > 0. Then if Tan(¬X, x) has full dimension, we have:

∂*dX(x)o ⊂ − Tan(¬X, x)

In particular, this full-dimensional condition is verified for all x ∈ ∂X when X is a
Lipschitz submanifold.

Proof. Let u ∈ ∂*dX(x)o. By Lemma 2.10 we know that

u + Tan(X, x) ⊂ Tan(X, x)

which amounts to
Rd \ (u + Tan(X, x)) ⊃ Rd \ Tan(X, x)

From Lemma 2.12, we know that ¬ Tan(X, x) = Tan(¬X, x) by the full dimensionality condition.
This yields

u + int(Tan(¬X, x)) ⊃ int(Tan(¬X, x))

now taking the closure of both sides, along with the full-dimensionality condition, ensures the
inclusion

u + Tan(¬X, x) ⊃ Tan(¬X, x)

which implies that u belongs in − Tan(¬X).

12



3 Morse Theory for completentary regular sets
In this section, we use the previous tools and propositions to infer the two Morse theorems when
X is complementary regular (cf. Section 3.1) and f is Morse (in the sense of Definition 2.5). In
this setting, the eroded sets X−r converge to X in the Hausdorff sense when r tends to 0 and
they are C1,1 by the implicit function theorem when r < reach(¬X).

Our approach is as follows. Let c be a regular value of f|X . Consider a family of functions
fr,c converging to f , in a way we will later precise, as r tends to 0. When r = 0, our notations
are consistent with f0,c = f . Consider the sublevel sets:

Xc = X ∩ f−1(−∞, c] and X−r
c := X−r ∩ f−1

r,c (−∞, c]

and remark that they are the zero sublevel sets of the following functions:

ϕr = dX−r + max(fr,c − c, 0).

• In Section 3.1, we define the regularity condition required on sets X ⊂ Rd to prove the
Morse Theorems. Such sets are called complementary regular. Proposition 3.2 describes
how most offsets are part of this class.

• In Section 3.2, we prove that there exists a K > 0 such that there exists a retraction of any
tubular neighborhoods (X−r

c )K onto X when r > 0 is small enough. We prove a technical
lemma to ensure that we can build an approximate inverse flow of ϕr,c using Proposition 2.8.

• In Section 3.3 we study the case r = 0 and prove that for ε > 0 small enough, the sets Xc+a

can be retracted onto Xc−ε also using Proposition 2.8.

• In Section 3.4 we let c be a critical value and assume there is only one corresponding critical
point which is be non-degenerate. We show that for any ε > 0 the change in homology
between Xc+ε and Xc−ε is determined by the curvature of X at the pair

(
x, ∇f(x)

||∇f(x)||

)
and

the Hessian of f|X at x. We prove this by considering fr,c to be f translated with magnitude
r in the direction −∇f(x).

• In Section 3.5 we let c be a critical value and assume that the critical points in f−1(c)
are non-degenerate although there might be several of them. We determine the topology
changes between Xc−ε and Xc+ε through the curvature of X by considering a more involved
fr,c.

3.1 Complementary regular sets

We will prove the Morse theorems on complementary regular sets, which are defined as follows.

Definition 3.1: Complementary regular sets

We say that X ⊂ Rd is a complementary regular set when it verifies the following four
conditions:

• reach(¬X) > 0;

• ∃ µ ∈ (0, 1] such that reachµ(X) > 0;

• X is compact;

• X has full dimension.

The following proposition gives mild sufficient conditions for offsets to be complementary
regular.
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Proposition 3.2: Offsets among complementary regular sets

1. Let µ ∈ (0, 1], Y ⊂ Rd and ε ∈ R be such that reachµ(Y ) > ε ≥ 0. Then X = Y ε is a
complementary regular set.

2. Let Z be a compact subanalytic subset of Rd. For all ε > 0 but a finite number, Zε

is a complementary regular set.

Proof. 1. Let Y be any set verifying the assumptions. From Theorem 4.1 in Chazal et al. [7],
reach(¬(Y ε)) > 0. Now Y ε is a lipschitz domain thanks to Clarke’s Inversion Theorem for
Lipschitz functions, ensuring Y ε has full dimension.

2. From Fu [5], we know that the set Crit(Z) = {ε > 0 | ∀ µ ∈ (0, 1], reachµ(Zε) = 0} is
locally finite. If this set were to be unbounded, the diameter of Z would be infinite by
the characterization of ∂*dX in term of closest points, which contradicts the compacity
assumption. By the previous result, for any ε ∈ int(R \ Crit(Z)) = R+ \ Crit(Z), the offset
Zε is a complementary regular set.

3.2 Building a deformation retraction between Xc and its smooth surrogate

Let c ∈ R be a regular value of f|X . For any r > 0, we build a smoothed out version of Xc which
we denote X−r

c , close to Xc at rate O(r) with respect to the Hausdorff distance. We define X−r
c

as the intersection between X−r and the sublevel set of a family of functions fr,c defined as f
translated with magnitude at most r. It will be denoted fr to ease notation as c will be fixed.
The direction of translation does not matter when c is a regular value, as shows the following
lemma.

Lemma 3.3: Deformation retractions around Xc, X−r
c

Let X be a complementary regular set. Let c be a regular value of f|X and fr = f ◦ γr be f
composed with a smooth function γr such that γr(x) = x + rη(x) where η, ∇η are bounded
on Rd. Put ϕ = dX + max(f − c, 0) and ϕr = dX−r + max(fr − c, 0).

Then there exists K > 0, M ≥ 1, L ≥ 1 and piecewise-smooth flows

C : [0, 1] × ϕ−1(] − ∞, K]) → ϕ−1(] − ∞, K])

Cr : [0, 1] × ϕ−1
r (] − ∞, K]) → ϕ−1

r (] − ∞, K])

such that:

• For all r > 0 small enough, (Xc)
K
M ⊂ ϕ−1

r (−∞, K] and (X−r
c ) K

M ⊂ ϕ−1(−∞, K]

• C(0, ·), Cr(0, ·) are identity over their respective spaces of definition;

• C(1, (Xc)
K
M ) = Xc and Cr(1, (X−r

c ) K
M ) = X−r

c

• For any t ∈ [0, 1], C(t, ·)|Xc
, Cr(t, ·)|X−r

c
are the identity over Xc and X−r

c .

• C(·, x) and Cr(·, x) are 2KL-Lipschitz in the first parameter when r > 0 is small
enough, with L = sup{d0(∂*ϕ(y))−1 | y ∈ ϕ−1(0, K]}

Proof. Remark that Xc = ϕ−1
c (0) and X−r

c with (ϕr
c)−1(0). We want to apply Proposition 2.8.
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Define
ω(s, K) := inf

r∈[0,s]
x∈ϕ−1

r (0,K]

d0(∂*ϕr(x))

Now Lemma 3.5 states that
lim inf
s→0+

K→0+

ω(s, K) > 0 (3.1)

Take K, s > 0 small enough that for all r ∈ [0, s], ∂*ϕr does not vanish on ϕ−1
r (0, K],

allowing the offsets to be retracted by Proposition 2.8. The first derivatives of the flow are
bounded by lr,K = sup{d−1

0 (∂*ϕs(y)), s ∈ [0, r], y ∈ ϕ−1
r (0, K]} which is finite when r, K are taken

small enough and tend to L when r, K go to zero. Reparametrizing the flow as in the proof of
Proposition 2.8, we can choose C, Cr to be 1+ε

KL Lipschitz for any ε > 0.
The functions (ϕr)r∈[0,s] are uniformly Lipschitz. Consider M = 1+sup{Lip(ϕr)r∈[0,s]}. Since

the sets X−t
c converge to Xc in the Hausdorff sense when t goes to 0, and since ||ϕ − ϕr|| = O(r),

we have
(X−t

c )
K
M ⊂ ϕ−1

r (0, K]

for any t, r small enough.

Corollary 3.4: Homotopy Equivalence

Let c be a regular value of f|X such that fr = f ◦ γr with γr(x) = x + rη(x) with η, ∇η

smooth and bounded on Rd.
Then for all r > 0 small enough, X−r

c and Xc have the same homotopy type.

Proof. Since limr→0 dH(X−r
c , Xc) = 0, the flows C, Cr are respectively well defined on X−r

c , Xc

for r small enough thanks to the previous lemma. Then C(1, ·) ◦ Cr(1, ·) (resp. Cr(1, ·) ◦ C(1, ·))
is homotopic to IdXc (resp. IdX−r

c
) via the homotopy (t, x) 7→ C(1, C(t, Cr(t, x)))

Lemma 3.5: Non vanishing ∂*ϕr around a critical value

Let ri, Ki → 0+, xi ∈ ϕ−1
ri

(0, Ki] and c be a regular value of f[X . Then,

lim inf
i→∞

d0(∂*ϕri(xi)) > 0

Proof. We distinguish 7 cases to compute ∂*ϕri(xi). By extracting subsequences we can assume
that (xi) lies in one of this case. They are depicted in Figure 7.

In fact, we will show that for any such sequence, we have

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ min(µ, σ, κ) > 0 (3.2)

where

• κ := inff−1(c)∩X ||∇f ||. It is a positive quantity because c is a regular value of f|X .

• σ := infx∈∂X∩f−1(c) d0(Ax) where x 7→ Ax is the upper semi-continuous set-valued application
defined by:

Ax :=
{

λu + ∇f(x) | λ ∈ [0, 1], u ∈ ∂*dX(x)
}

∪
{

u + λf(x) | λ ∈ [0, 1], u ∈ ∂*dX(x)
}

=
(
[0, 1] · ∂*dX(x) + {∇f(x)}

)
∪
(
∂*dX(x) + [0, 1] · {∇f(x)}

)
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For any point x ∈ ∂X, keep in mind that from Theorem 2.9 we have the identity

Cone ∂*dX(x) = Nor(X, x)

which means that any direction in ∂*dX(x) is a direction in Nor(X, x). The constant
σ is positive because c is a regular value of f|X , ∂X ∩ f−1(c) is a compact set and the
map x 7→ d0(Ax) is lower semicontinuous. If it were to be zero, there would be a point
x ∈ ∂X ∩ f−1(c) with d0(Ax) = 0. This would mean that the direction of ∇f(x) meets
Nor(X, x), which contradicts the fact that c is a regular value.

• µ ≤ inft→0{d0(∂*dX(x)) | 0 < dX(x) < t} is positive by hypothesis.

Figure 7: Illustration of the 7 cases of Lemma 3.5.

Idea behind the proof. For each of the following cases, lim inf i→∞ d0(∂*ϕri(xi)) is greater
than one of the constants. The computation of ∂*ϕri(xi) shows that it either lies close to ∇f(xi)
or ∂*dX(xi) or close to be inside Axi . To ease some notations we write ν(x) = x

||x|| .

Case 1. dX−ri (xi) > ri and fri(xi) < c.
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Then ∂*ϕri(xi) = ∂*dX(xi) with 0 < dX(xi) < Ki. By the µ-reach hypothesis, we have

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ µ > 0. (3.3)

Case 2. xi ∈ int(X−ri).

Then ∂*ϕri(xi) = ∇fri(xi) and 0 < fri(xi) − c ≤ Ki. Since ||∇fri(xi) − ∇f(xi)|| = O(ri),
we have

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ κ > 0. (3.4)

Case 3. dX−ri (xi) > ri and fri(xi) > c.

Then ∂*ϕri(xi) = ∂*dX(xi) + ∇f(xi) ⊂ Axi , which yields

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ σ > 0. (3.5)

Case 4. dX−ri (xi) > ri and fri(xi) = c.

The Clarke gradient can be computed in a set of density 1 at xi [11]. Since ∇fri(xi) is
non zero, the set {y | fri(y) ̸= c} has density 1 at x. Now without loss of generality by
extracting we can assume xi converges to a x in ∂X ∩ f−1(c) and we obtain

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ d0(Ax) ≥ σ > 0. (3.6)

Case 5. xi ∈ ∂X−ri and fri(xi) > c.

If ri > 0, then ∂*dX−ri (xi) is the convex set generated by 0 and the direction normal to
X−ri at xi, that is[0, 1] · ν(ξ¬X(xi) − xi). Note that this direction belongs in the normal
cone N(X, ξ¬X(x)). Adding the contribution of fri we obtain

∂*ϕri(xi) ⊂ Aξ¬X(xi).

If ri = 0, then ∂*ϕri(xi) = [0, 1] · ∂*dX(xi) + ∇fri(xi) and we obtain

∂*ϕri(xi) ⊂ Axi .

Either way, lim inf i→∞ d0(∂*ϕri(xi)) ≥ σ > 0.

Now the remaining cases fit inside the sets of x such that 0 < dX−r (x) ≤ r. Remark that
reach(X−r) ≥ r. If dX−r (x) < r we know that x has only one closest point ξX−r (x) in X.

∂*dX−r (x) = {ν(x − ξX(x) )}

If dX−r (x) = r, x belongs to ∂X and the Clarke gradient ∂*dX−r (x) is Conv(Nor(X, x) ∩ Sd−1)
which is Conv(Cone ∂*dX(x) ∩ Sd−1) by Theorem 2.9. These considerations are illustrated in
Figure 8 with 0 < dX−r (x1) < r and dX−r (x2) = r. In any case, this leads to ∂*dX−r (x) ⊂
∂*dX(ξ¬X(x)).

Case 6. 0 < d−ri
X (xi) ≤ ri and fri(xi) ≥ c

∂*ϕri(xi) ⊂ Conv
(
Nor(X, ξ¬X(x)) ∩ Sd−1

)
+ [0, 1] · ∇fri(xi). Now by compactness assume

that xi → x. Then x ∈ ∂X ∩ f−1(c) and thus

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ σ > 0. (3.7)
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Figure 8: Visualisation of the inclusion ∂*dX−r (x) ⊂ ∂*dX(ξ¬X(x)) for two points x1 and x2. The
translated unit cone x2 + Nor(¬X, x2) ∩ B(x2, r) is depicted in red.

Case 7. 0 < d−r
X (xi) ≤ ri and fri(xi) < c

Then ∂*ϕri(xi) ⊂ Conv
(
∂*dX(ξ¬X(xi)) ∩ Sd−1

)
which yields

lim inf
i→∞

d0(∂*ϕri(xi)) ≥ µ > 0. (3.8)

3.3 Constant homotopy type Lemma

In this subsection we prove that under our assumptions the topology of the sublevel sets does not
evolve in between critical values.

Theorem 3.6: Constant homotopy type in between critical values

Let X ⊂ Rd be a complementary regular set. Let f : Rd → R and a < b ∈ R be such that
[a, b] contains only regular values of f|X .

Then Xa is a deformation retraction of Xb.

This theorem is a direct consequence of Lemma 3.8. We prove a technical lemma first.

Lemma 3.7: Locally non-vanishing Clarke gradients

Let c be a regular value of f|X .
Then

lim
ε→0+

K→0+

inf
{

d0(∂*ϕc+a(x)), x ∈ ϕ−1
c+a(0, K] | a ∈ [−ε, ε]

}
> 0

Proof. We proceed by contradiction. Assuming the inequality is false, there exist two sequences
in R ai → 0, Ki → 0+ and (xi)i∈N a sequence in Rd such that

lim
i→∞

d0(∂*ϕc+ai(xi)) = 0

We keep the partition of ϕ−1
c+a(0, K) as in the proof of Lemma 3.5. With r = 0, we obtain 5

cases to compute ∂*ϕc+ai .
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Case 1. f(xi) < c + ai. Then ∂*ϕc+ai(xi) = ∂*dX(xi) and thus

lim inf
i→∞

d0(∂*ϕc+ai(xi)) ≥ µ > 0

Case 2. xi ∈ int(X). Then ∂*ϕc+ai(xi) = {∇f(xi)} and thus

lim inf
i→∞

d0(∂*ϕc+ai(xi)) ≥ σ > 0

Cases 3, 4, 5. 
f(xi) > c + ai and dX(xi) > 0
f(xi) > c + ai and xi ∈ ∂X
f(xi) = c + ai and dX(xi) > 0

In these 3 cases we have the inclusion ∂*ϕc+ai(xi) ⊂ Axi . As in the proof of Lemma 3.5,
the map y 7→ Ay is lower semicontinuous. Now if (xi) converges to x then it belongs to
∂X ∩ f−1(c) and c being a regular value yields

lim inf
i→∞

d0(∂*ϕc+ai(xi)) ≥ κ > 0

Lemma 3.8: Local deformation retractions

Let X be complementary regular, f : Rd → R smooth and let c be a regular value of f|X .
Then Xc−ε is a deformation retraction of Xc+a for all a ∈ [−ε, ε] for any ε > 0 small
enough.

Proof. Put σ the positive constant obtained in Lemma 3.7. Thus for every a ∈ [−ε, ε] there exists
a 2K

σ -Lipschitz approximate flow of ϕc+a on ϕ−1
c+a(0, K] which we will denote Cc+a(·, ·). We also

fix M > 0 such that the ϕc+a are all M Lipschitz over the sets we are considering.
Thus Cc−ε is well-defined at any time in X

K
M
c−ε ⊂ ϕc−ε[0, K]. Now since (ϕc+a)a∈[−ε,ε] is a

family of Lipschitz functions whose constants are uniformly bounded, there is a constant Q > 0
such that Xc+a ⊂ XεQ

c−ε for all a ∈ [−ε, ε]. For ε small enough we also have Xc+a ⊂ ϕ−1
c−ε[0, K].

Thus the approximate flow Cc−ε(·, ·) restricted to [0, 1] × Xc+a is well-defined for any a ∈ [−ε, ε]
when ε > 0 is small enough.

Now we show that for ε > 0 small enough, for any a ∈ [−ε, ε] the end-flow Cc−ε(1, ·)|Xc+a
is

homotopic to IdXc+a via the homotopy

(t, x) 7→ Cc+a(1, Cc−ε(t, x))

The homotopy is well-defined at any point as Cc−ε is 2K
σ -Lipschitz in time parameter, yielding

Cc−ε(1, Xc+a) ⊂ X
2Kε

σ
c+a . This last set is a subset of ϕ−1

c+a[0, K] when ε > 0 is small enough.

3.4 Handle attachment around critical values

First, we describe how a cell is glued around a unique critical point.

Proposition 3.9: Around unique critical values

Let X be complementary regular and f : Rd → R. Assume f|X has only one critical point
p in f−1(c) which is non degenerate.
Then for any ε > 0 small enough Xc+ε has the homotopy type of Xc−ε attached with a
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λ-cell, where

λp := indice of the Hessian at p + number of infinite curvatures at p

Proof. Let xc be the sole critical point with value c and nc = ∇f(xc)
||∇f(xc)|| ∈ Nor(¬X, xc) the

normalized gradient of f at this point. Put fr(x) = f(x − rnc) to be f translated in the direction
nc with magnitude r.

The pair (xc, nc) ∈ Nor(¬X) is regular by non-degeneracy of f at x. Denote (κ′
i)1≤i≤d−1

the principal curvatures (cf. Proposition 2.4) of ¬X at (xc, nc) sorted in ascending order and
put m = max{i, κ′

i < ∞}. The regularity of (xc, nc) for X guarantees that the Gauss map
x ∈ ∂¬X−r 7→ n(x) ∈ Sd−1 is differentiable at xc + rnc. The principal curvatures of ¬X−r at
(xc + rnc, nc) can be obtained from the κ′

i via κ′
i,r = κ′

i
1+rκ′

i
. Note that when a principal curvature

κ′
i is infinite, the previous equality is valid with κ′

i,r = 1
r .

The Gauss map of X−r is the opposite of the previous one and thus also differentiable at
xc + rnc. The principal curvatures (κi,r)1≤i≤d−1 of X−r at (xc + rnc, −nc) are the opposite of
that of ¬X−r κi,r = −κ′

i,r.
Let a, b ∈ Tan(X−r, xc + rnc). The Hessian Hrfr of (fr)|X−r at xc + rnc (cf. Definition 2.5)

is exactly

Hrfr(a, b) =Hfr(a, b) + ||∇fr(xc + rnc)|| IIr(xc + rnc)(a, b)

where IIr(xc + rnc) is the second fundamental form of X−r at xc + rnc. Proceeding exactly in the
same fashion as the proof of 4.6 in [3] we obtain that there exist matrices A1, A2, A3, C, B such
that in a good basis the Hessian Hrfr has the form(

A1 + rA2 + r2A3 rC
rCt −r ||∇f(p)|| Id + r2B

)

where A1 is the diagonal matrix of dimension m with diagonal (−κ′
i)1≤i≤m. It is the same

computation as [3] except that we end up with a minus sign in front of the identity in the lower
right corner. When r > 0 is small enough, the index of this matrix is that of A1 plus the dimension
of the identity matrix in the lower right corner. Then, we apply classical Morse Theory on sets
bounded by a C1,1 hypersurface to get the change in topology between X−r

c−ε and X−r
c+ε. This is

summarized in the following diagram.

3.5 Multi-handle attachement

Now we want to understand the change in topology when a critical value might have several
corresponding critical points. We begin by showing that non-degenerate critical points of f|X
have to be isolated.

Lemma 3.10: Correspondance between critical points of f|X and f r
|X−r

Let X be a subset of Rd and r such that reach(¬X) > r > 0. Assume x is a non-degenerate
critical point of f|X .
Then xr = x + r ∇f(x)

||∇f(x)|| is a critical point of f r
|X−r of the same value.

As a consequence, any non-degenerate critical point of f|X is isolated.
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Figure 9: Commutative diagram in the proof of Proposition 3.9

Proof. xr being a critical point of f r
X−r comes from a straightforward computation: we have

f r(xr) = f(x) and ∇f(x) = ∇f r(xr), and we know that Nor(X−r, xr) = Cone(∇f(x)). The last
part follows from the isolatedness of critical points in X−r. By the proof of Proposition 3.9, xr has
to be a non-degenerate critical point for f r

|X−r when r > 0 is small enough. Any non-degenerate
critical point of a C1,1 hypersurface has to be isolated. This forces x to be an isolated critical
point by continuity of y 7→ y + rnc.

Theorem 3.11: Morse Theory for sets whose complement set has positive reach

Let X ⊂ Rd and µ ∈ (0, 1] such that reachµ(X) > 0 and reach(¬X) > 0.
Suppose f|X has only non-degenerate critical points. Each critical level set X ∩ f−1({c})
has a finite number pc of critical points, whose indices (defined in Proposition 3.9) we
denote λc

1, . . . λc
pc

.
Then

• If [a, b] does not contain any critical value, Xa is a deformation retract of Xb.

• If c is a critical value, Xc+ε has the homotopy type of Xc−ε with exactly pc cells
attached around the critical points in f−1(c)∩X, of respective dimension λc

p1 , . . . , λc
pc

for all ε > 0 small enough.

Proof. By Lemma 3.10 we know that the critical points in f|X have to be isolated. Put x1, . . . , xp

the critical points of f|X inside f−1(c). Put ni = ∇f(xi)
||f(xi)|| and xr

i = xi + rni. Let n(x) be the
normal ni associated to the closest critical point xi of x. This map is piecewise constant and
defined almost everywhere. We will show that {xr

1, . . . xr
p} is exactly the set of critical point of a

certain f r
|X−r with f r a new function built in the following paragraphs.

Let Ui ⊂ Vi be respectively closed and open balls containing xi such that Vi ∩ Vj = ∅ when
j ̸= i.

Let ηc be smooth function on Rd with values in [0, 1] such that ηc is constant of value 1 inside
each Ui and 0 outside of ⋃Vi. The map γc : y 7→ ηc(y)n(y) is well-defined and continuous when
the Ui are small enough. When r is small enough, it is a diffeomorphism.

Finally, we keep the definition X−r
c = X−r ∩ f−1

r (−∞, c] but define a new fr, which is f
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locally translated around the critical points:

fr : x 7→ f(x + rγc(x))

From Lemma 3.10 we know that the (xr
i )1≤i≤p are non-degenerate critical point of X−r for fr|X−r

with corresponding index (λc
i )1≤i≤p. From Lemma 4.8 in [3], we know that xr

i is the only critical
point of fr|X−r inside fr(Ui) when r is small enough.

Now we prove that there are no critical points outside of ∪ifr(Ui) when r is small enough.
By classical theorems X−r has a C1,1 boundary. Since ∇f does not vanish in a neighborhood
of f−1(c) ∩ X, we know that x ∈ X−r is a critical point of fr|X−r if and only if x ∈ ∂X−r,
{ν} = Nor(X−r, x) ∩ Sd−1 (i.e ν is the normal at x) and

∣∣∣∣∣∣ ∇fr(x)
||∇fr(x)|| − ν

∣∣∣∣∣∣ = 0.
Remark that we have both

• Nor(X−r) = {(x + rν, −ν) | (x, ν) ∈ Nor(¬X)}

• sup(x,ν)∈Nor(X) ||∇f(x) − ∇fr(x + rν)|| = O(r)

leading to

lim inf
r→0

inf
(x,ν)∈Nor(X−r)

x/∈∪ifr(Ui)
fr(x)=c

∣∣∣∣∣∣∣∣ ∇fr(x)
||∇fr(x)|| − ν

∣∣∣∣∣∣∣∣ ≥ inf
(x,ν)∈Nor(¬X)

x/∈∪iUi
f(x)=c

∣∣∣∣∣∣∣∣ ∇f(x)
||∇f(x)|| − ν

∣∣∣∣∣∣∣∣ > 0 (3.9)

Thereby showing that {xr
1, . . . , xr

p} is exactly the set of critical points of fr|X−r with value c. We
obtain X−r

c+ε from X−r
c−ε by gluing cells locally around each critical point as in classical Morse

Theory.

Remark. A similar argument holds assuming X has positive reach, thereby showing that
Morse Theorems are still true when X has positive reach and f is a Morse function with several
non-degenerate critical points sharing the same critical value, by taking ηc(x) to be −1 near
critical points instead of 1.
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