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Lorsqu’on me demandait ce que j’espérais trouver en Extrême-Amont, cette question banale
posée mille fois, je répondais maintenant : "J’espère trouver mon visage. Quelqu’un là-haut le

sculpte à coup de salves dures. Chaque acte que je fais le modifie et l’affine. Mes fautes le
balafrent."

Les sujets de thèses m’ont toujours amusé et attendri : c’est mignon, ces étudiants qui, pour
imiter les grands, écrivent des sottises dont les titres sont hypersophistiqués et dont les contenus

sont la banalité même, comme ces restaurants prétentieux qui affublent les œufs mayonnaise
d’appellations grandioses.
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Géométrie persistante

Résumé

Cette thèse est dédiée à l’inférence géométrique et plus particulièrement à l’estimation de
courbures d’un objet dans un espace euclidien à partir d’une approximation proche suivant
la distance de Hausdorff. Nous développons le concept de géométrie persistante, destiné à
étendre les propriétés filtrantes de l’homologie persistante au domaine de la géométrie. La
géométrie persistante consiste à utiliser les relations entre la topologie et les courbures d’un
sous-ensemble de Rd fournies par la géométrie intégrale, comme la formule cinématique prin-
cipale. À l’aide d’une construction appelée persistance image, nous mêlons ces relations à
l’homologie persistante pour estimer les volumes intrinsèques d’un objet à partir d’une ap-
proximation quelconque, et ce à un taux linéaire suivant la distance de Hausdorff qui les sépare.
Parmi les volumes intrinsèques, on trouve notamment la caractéristique d’Euler, la courbure
moyenne et l’aire du bord de l’objet. Nous montrons que cette approximation est valide tant
que l’objet approximé a des courbures totales bornées et un µ-reach positif pour un certain µ
dans ]0, 1], le µ-reach étant une quantité généralisant le reach de Federer. Elle a été définie pour
généraliser certains résultats d’inférence géométrique à des objets potentiellement ni lisses, ni
convexes. Les objets compacts de Rd à µ-reach positif pour un certain µ ∈]0, 1] et à courbures
totales bornées forment une vaste classe, contenant notamment les sous-variétésC1 compactes,
les compacts convexes, les polyèdres, et même plus généralement la plupart des compact strati-
fiés. Nous utilisons et obtenons de nouveaux résultats dans différentes théories mathématiques
comme l’analyse non-lisse, la théorie géométrique de la mesure et la théorie de Morse. En par-
ticulier, un résultat crucial à notre approche est le développement d’une notion de fonctions de
Morse pour des voisinages tubulaires de parties de Rd à des valeurs régulières de leur fonction
distance. Nous montrons que la topologie des sous-niveaux d’une fonction lisse restreinte à un
tel objet, qui n’est pourtant pas une variété C2, évolue généralement par l’attachement d’une
cellule autour de chaque point critique, comme dans la théorie de Morse sur des variétés C2.

Mots-clés : Inférence géométrique, Homologie persistante, Théorie géométrique de la mesure,
Géométrie intégrale, Analyse topologique des données
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Persistent Geometry

Abstract

This thesis is dedicated to geometric inference, and more specifically to the estimation of cur-
vatures of objects in Euclidean space from an approximating set that is close in the Hausdorff
distance. In order to extend the filtering property of persistent homology to the realm of geom-
etry, we introduce the framework of persistent geometry. It consists in combining connections
between the topology and the curvatures of a subset of Rd provided by integral geometry, such
as the principal kinematic formula, with persistence theory thanks to the so-called image per-
sistence modules. We develop a new method to estimate the intrinsic volumes of a set, which
are global quantities built from the curvatures of the set; particular intrinsic volumes include
boundary area, Euler characteristic, and mean curvature. Our method allows for the recov-
ery of the intrinsic volumes of a set from any approximating set up to an error that is linear
with respect to the Hausdorff distance between them. We show that this approximation is
valid as long as the estimated set has bounded total curvature and a positive µ-reach for some
µ ∈ (0, 1). The µ-reach is a relaxation of the reach of Federer defined to extend geometric
inference results to possibly non-smooth, non-convex sets. The class of compact sets of Rd
having bounded total curvatures and a positive µ-reach for an arbitrary µ in (0, 1) is broad,
containing compact C1 submanifolds, compact convex sets, polyhedra, and more generally
many compact stratified subsets of Rd. To deal with these possibly singular sets, we use tools
from different fields of mathematics, such as non-smooth analysis, geometric measure theory,
and Morse theory. In particular, a crucial step in our reasoning consists in the development
of Morse theory for offsets of a set at regular values of its distance function. We show that
the topology of sublevel sets of smooth maps restricted to such objects — which are not C2

manifolds — typically evolves by the gluing of cells around each critical point, just as in the
classical Morse theory on C2 manifolds.

Keywords: Geometric inference, Persistent homology, Geometric measure theory, Integral geom-
etry, Topological data analysis
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CHAPTER 1
Introduction

Geometric inference deals with the retrieval of information about a geometric object from a
close, approximating set. This thesis aims at contributing to this field by introducing the concepts
of persistent geometry, which we use to develop a new method for recovering the curvatures of
subsets of Euclidean spaces verifying mild regularity conditions. We will prove that this method
enjoys a linear accuracy with respect to the Hausdorff distance. We employ the numerous relations
between the topology of a set and its geometry to extend the noise filtering properties of persistent
homology to the realm of geometry. To that end, we use tools from various fields of mathematics
such as non-smooth analysis, Morse theory, geometric measure theory and persistent homology.

In this introduction, we explain the ideas of persistent geometry and introduce the core princi-
ples of the above-mentioned fields, while focusing on their interactions with persistent geometry.
We then present the outline of this thesis and highlight our contributions.

Basic concepts. When studying the topology of a subset of Rd, we mostly consider the so-
called homology of the set seen as a topological space, its topology being induced by the distance
inherited from Rd. To any topological space X and any field K, singular homology associates
vector spaces over K denoted by (Hi(X,K))i∈N. These vector spaces are homotopy invariant,
which intuitively means that they are constant under continuous deformations of X . We in-
terpret this dimension to be the number of i-th dimensional topological features of X . More
precisely, the dimension of H0(X,K) counts the number of connected components of X , the di-
mension of H1(X,K) the number of cycles, that is, the number of independent, circle-like holes;
and generally the dimension of Hi(X,K) corresponds to the number of independent i-th dimen-
sional "voids". An example of set admitting a 2-dimensional void is the sphere of R3, which
has also one connected component and no cycle. The dimension of Hi(X,K) is called the i-th
Betti number of X . Most of the time, we reason with a fixed field and omit it from the nota-
tion. The Euler characteristic χ(X) of X is defined the alternating sum of the Betti numbers, i.e.,
χ(X) =

∑︁
i(−1)i dimHi(X,K) - when this expression makes sense. Remarkably, this quantity

does not depend on the field K.
Thanks to the homotopy invariance of homology, one can recover the Betti numbers of a

shape in Rd by deforming it — when possible — into a union of glued, deformed balls of finite
dimension, which we call a CW-Complex. For instance, we can deform a t-shirt into a patch of
three circles, which has clearly three holes and one connected component.

To compare subsets of Rd, we use the so-called Hausdorff distance. Let dA : x ↦→
infa∈A ||x− a|| be the distance function associated to any subset A of Rd. The offsets of A
are the positive sublevel sets of dA, which we denote by At := d−1

A (−∞, t]. The Hausdorff

1
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Figure 1.1 – Cell decomposition of a t-shirt

Figure 1.2 – Hausdorff distance between a square B and a point cloud A with an outlier.

pseudo-distance between two subsets A and B of Rd is defined as

dH(A,B) := inf{t ∈ R | A ⊂ Bt, B ⊂ At}.

This quantity can be infinite, for instance when A is bounded and B is not, or zero for two
distinct sets, when A is open and B is the closure of A. Nevertheless, dH endows the set of
compact subsets of Rd with a complete metric. Remark also that the definition of the Hausdorff
distance does not involve any assumptions on the sets. This allows to compare subsets of Rd no
matter their regularity, as opposed to other distance-like definitions such as the Fréchet distance or
the volume of the symmetric difference of two subsets. A sequence of point clouds can converge
in the Hausdorff sense to a smooth object in Rd. It is, however, sensitive to outliers.

Persistent Geometry. The idea of persistent geometry is to associate geometrical concepts to a
pair of nested sets X ⊂ Z in a Euclidean space. The inclusion ι : X ↪→ Z factors through any
set Y in between X and Z, and this factorization can be further restricted to any other set A in the
same Euclidean space. Now, continuous functions between topological spaces induce linear maps
between the homology vector spaces commuting with the composition ∗, to which the previous
factorization extends.

X ∩A Z ∩A H•(X ∩A) H•(Z ∩A)

Y ∩A H•(Y ∩A)

ι

j

ι∗

j∗h h∗

The rank of ι∗ : H•(X ∩A) → H•(Z ∩A) is smaller than the dimension of H•(Y ∩A). We think
of this fact as the topological filtering property of the inclusion map X ↪→ Z.

∗. This is the functoriality of singular homology.
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On the other hand, there exist so-called integral geometry formulas relating classical geometric
quantities to topological quantities. Crofton’s formula relates for instance the boundary area of X ,
which we will denote by Vd−1(X), to the average number of crossings of X with a line. Remark
that this coincides with the Euler characteristic, as the sole topological features of a subset of a
line are connected components. Equipping the space of lines of Rd with its so-called invariant
measure, there is a constant cd such that for every reasonable set X , we have:

Vd−1(X) = cd

∫︂
χ(X ∩ L) dL. (1.1)

For any line L of Rd, we let ιLX,Z : H0(X ∩ L) → H0(Z ∩ L) be the inclusion induced
map. The boundary area of the nested pair (X,Z), which we will denote by Vd−1(X,Z), could
be defined directly from Crofton’s formula:

Vd−1(X,Z) := cd

∫︂
rank(ιLX,Z) dL. (1.2)

The filtering property tells us that Vd−1(X,Z) ≤ Vd−1(Y ) whenever X ⊂ Y ⊂ Z. From these
considerations arise two natural questions.

— Does there exist an object Y ∗ containing X , included in Z, such that Vd−1(X,Z) =
Vd−1(Y ∗) ?

— When are Vd−1(Y ) and Vd−1(X,Z) close ?
The first one is an optimization problem: if such an object Y were to exist, then it would be
the set sandwiched between X and Z minimizing its boundary area; and this property would be
characterized by having for almost-all lines L the equality χ(Y ∩L) = rank(ιLX,Z). It is not clear
that such an object exists, but if it does, it is expected to enjoy some form of regularity as it satisfies
an area-minimizing problem. This intuition gives an idea for the second problem : if Y is regular
as well, then Vd−1(Y ) should not be exceeding Vd−1(X,Z) by a too large margin, although there
remains to see how this translates to a quantitative bound.

These ideas can be used for geometric inference with respect to the Hausdorff distance. Take
for instance a point cloud X in a Euclidean space approximating a shape Y up to Hausdorff
distance ε as in Figure 1.3. Both offsetsXε,X3ε consist in a finite union of balls. Their boundaries
have many corners, and their boundary areas generally overestimate that of Y as illustrated in two
dimensions in Figure 1.4. However, following our intuition, the pair of nested sets (Xε, X3ε)
could be used to approximate any regular object in-between them, which notably includes Y 2ε.
To infer the boundary area of Y itself, we also need to control the difference in boundary areas
between Y and Y 2ε.

From Crofton’s formula, we obtained a candidate for the boundary area of the nested pair
(X,Z) defined using the inclusions X ∩ L → Z ∩ L where L ranges among every line of Rd.
However, there exist other integral geometric formulas linking the topology of a set to its geometry,
the most notable example being the principal kinematic formula. This one uses the inclusions
X ∩ B → Z ∩ B, where B runs among all bounded balls of Rd, to determine a candidate for
the area boundary of the pair (X,Z). The bounded balls of Rd can be parametrized as sublevel
sets of maps dx : y ↦→ ||y − x||, where x runs among Rd; which is particularly suited to the use
of persistent homology, as will be described in the next paragraph. It is not clear whether these
area boundary candidates coincide or not, raising the question of the consistence of persistent
geometry. Can we give sense to the geometry of a nested pair (X,Z) using the aforementioned
concepts ? Does it depend on the choice of a family of subsets of Rd, such as the family of lines
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Figure 1.3 – Point cloud lying close to a curve. Figure 1.4 – Xε ⊂ Y 2ε ⊂ X3ε.

or balls as above, or the sublevel sets of a family of functions Rd → R ? In any case, our use of
the framework of persistent geometry will settle for the family of bounded balls.

Persistent Homology. Persistent homology consists in the study of the evolution of the topolog-
ical features of a filtration (Xt)t∈R, that is, a non-decreasing family of subsets of Rd. It associates
to any filtration the values of birth and death of features in a so-called persistence diagram. In
particular, if Xt = f−1(−∞, t] is the closed sublevel set filtration of a map f : Rd → R, we
speak of the persistence diagram of f . Diagrams can be represented as barcodes, as illustrated
below for the height sublevel-set filtration of a t-shirt.

Figure 1.5 – Barcode associated to a height sublevel-set filtration of a t-shirt

Now recall the context of persistent geometry, with X ⊂ Z ⊂ Rd. The existence of the
inclusion map X ⊂ Z allows to build from the persistent diagrams of f|X , f|Z another object
called the image persistence diagram of f|(X,Z). This approach systemizes the factorizing property
mentioned in the ideas behind persistent geometry; indeed, we will see that the image persistence
diagram of f|(X,Z) is in a sense simpler than the one of f|Y for any set Y in between X and Z.
Furthermore, the space of persistence diagrams is equipped with the so-called bottleneck distance,
which is built by comparing the birth and death of features between diagrams. Under some mild
regularity conditions on Z, we will use this metric to compare the diagrams of f|Y and f|(X,Z),
thereby justifying the intuition of persistent geometry.

Morse theory. Classically, Morse theory deals with the analysis of the topology of a manifold
X through the study of the so-called Morse functions, which form the class of C2 maps X → R
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whose Hessian at critical points is non-degenerate. Such applications are not out of the ordinary
as Morse functions form a dense, open subset of all C2 maps on X equipped with a certain norm.
Furthermore, ifX is a submanifold of Rd, it can be shown that almost all height functions restricted
to X are Morse. When f is a proper Morse function, the two core results of Morse theory are the
following:

(1) Let a < b. If for every x ∈ f−1[a, b], we have ∇f(x) ̸= 0, then the closed sublevel set
f−1(−∞, a] is a deformation retract of f−1(−∞, b];

(2) If there exists a δ > 0, and x ∈ X a critical point of f with f(x) = c such that x is the
unique critical point of f within f−1[c − δ, c + δ], then for all 0 < ε ≤ δ the topology of
f−1(−∞, c+ ε] is that of f−1(−∞, c− ε] with a λ-cell (that is, a set homeomorphic to a
unit ball in Rλ) glued around x, where λ is the index of the Hessian of f at x.

The locality of the gluing ensures that assertion (2) (also called handle-attachment lemma)
generalizes to any finite number of critical points sharing a critical value. In particular, the per-
sistence diagram of any such Morse function has exactly as many birth/deaths in an interval I as
there are critical points within f−1(I).

Figure 1.6 – Height function on a torus embedded in R3. The homotopy of the sublevel sets does
not evolve between critical values, and there is exactly one homological event in its associated
barcode per critical point.

The classical proof of (1) (also known as the constant homotopy lemma) consists in following
the flow of −f , which provides a homotopy whose trajectories make f decrease at a lower bounded
rate by assumption. To see (2), observe that the graph of the second-order approximation of f
around the critical point x is a multidimensional parabola going down in λ directions and going
up in d−λ directions. Note that this second order approximation is also related to the curvature of
the manifold, hinting a relationship between curvatures and topological events that we will exploit
in great details throughout the thesis.

Such proofs require X to be a manifold. As we work with sets satisfying only mild regu-
larity conditions arises naturally the question of possible extensions of Morse theory to classes
containing some singular sets, requiring tools from non-smooth analysis. The handle attachment
lemma requires a precise understanding of the geometry of the sublevel sets around its critical
points, whose behavior is vastly wilder when giving up the manifold assumption. For instance,
the generic behavior of smooth functions restricted to polyhedra of Rd may consist in the gluing
of several cells at once around a single critical point, as illustrated in Figure 1.8.
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Figure 1.7 – Idea of the proof of assertion (2) studying the topological event around the second
critical point of the height filtration of Figure 1.6. Here, a 1-dimensional cell is glued around the
critical point.

Figure 1.8 – A 20 triangles, symmetric ruff in R3. The sublevel set filtration of the height function
indicated with an arrow goes from 10 connected component to 1 when encountering the center.

Stratified Morse theory was developed in the eighties to extend the notion of Morse functions
to stratified subsets of Riemannian manifolds; yet in this context the number of topological events
in the persistent homology diagrams of a Morse function can be arbitrarily larger than the number
of critical points of the functions. Nevertheless, we will prove that the original handle attachment
lemma typically holds for smooths functions restricted to offsets of sets, using a careful compari-
son with smooth sets.

Non-smooth analysis. To compare persistence diagrams, we will build continuous deformations
between certain subsets of Rd. Examples of such deformations are given by the flow of smooth
functions, as mentioned in assertion (1) of the previous paragraph. However, we will need similar
properties for maps that are merely Lipschitz, for which flows do not exist. In particular, we will
work with maps built from elementary operations involving distance maps, which are generally
not C1 but always 1-Lipschitz. Thankfully, the class of Lipschitz maps has already been studied,
with the notable concept of Clarke gradient ∂*f of a Lipschitz map f : Rd → R. It is a set-valued
application defined at x as the convex hull of limits of gradients of f around x. It generalizes the
classical gradient of differentiable functions, in the sense that when f is differentiable at x, we
have ∂*f(x) = {∇f(x)}.

Several results on C1 maps have been generalized to Lipschitz maps with the use of the Clarke
gradient. For instance, when the Clarke gradient of f does not contain the point 0 on a level set
f−1(c), then the level set is a Lipschitz submanifold, that is, a set which is locally the graph of
a Lipschitz application. This is a Lipschitz extension to the classical local inversion theorem.
Going further, we will see that other functional properties of a Lipschitz map might translate into
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Figure 1.9 – Clarke gradient of a Lipschitz map R2 → R whose increasing sublevel sets are
represented from green to orange.

geometrical properties for its associated sublevel sets, with distance functions playing an important
role.

In the smooth setting, the flow of −f has trajectories making f decrease exactly at speed
||∇f ||. We will construct approximate inverse flows of a Lipschitz map f using its Clarke gradients
and a smooth approximation of the map itself. Up to an arbitrarily small constant, there exist an
approximate inverse flow with the same bound on the decreasing speed as in the smooth case,
except that ||∇f || is replaced by the distance between 0 and ∂*f , which we will denote by ∆(∂*f).
Note that when f is differentiable, these two quantities coincide. This approximate flow result
underline the importance of ∆(∂*f) in studying sublevel sets of f . For instance, when f = dA,
we define the µ-reach of A to be the largest t such that ∆(∂*dA) ≥ µ on At \A; this quantity will
prove to be central in our geometric inference result.

Curvatures and integral geometry. In this thesis, we will infer quantities relative to the cur-
vatures of certain subsets of Euclidean spaces, which measure how unflat a set is. For instance,
oriented surfaces of R3 are flat around a point x when the map y ↦→ ν(y) associating outward
pointing normals to the surface, called the Gauss map, is constant in a neighborhood of x. In
this case, the pointwise principal curvatures of a surface at x are given by the eigenvalues of the
differential of the Gauss map at x.

Figure 1.10 – Pointwise curvature of a surface. The Gauss map is constant around a and c, but not
around b.
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With the same idea, it can be shown that the curvature of a smooth curve is determined by its
first and second derivatives. However, when the curve is piecewise linear, it is obviously not flat
despite being flat almost everywhere; meaning that the curvature is concentrated at the corner of
the curves. The same conclusion holds for any polyhedron of R3 compared to oriented surfaces:
its curvatures are located at corners and edges, that is, at non-smooth points of the set.

Federer gave a united presentation of the apparent distinction between smooth and piecewise
affine objects. As long as there is a number r > 0 such that for any x in Rd with dX(x) < r, there
exists a unique closest point ξX(x) to x in X , he showed that for any Borelian subset U of Rd, the
map

t ∈ [0, r] ↦→ Vol(ξ−1
X (U) ∩Xt) =

t∑︂
i=0

ωit
iCd−i(X,U)

was a polynomial of degree d, and that its (d+ 1) coefficients ,rescaled by the volume ωi of a unit
ball in Ri, defined measures as a function of U which he called curvature measures. At a corner
of a convex polyhedron, these measures coincide with multiples of the solid angles made by the
cones of outward normals, as illustrated in Figure 1.11.

Figure 1.11 – Curvature measures of the convex hull of some points in R2.

The consistent definition of curvatures for the so-called singular sets, i.e., sets containing sin-
gular, non-convex points, is much more complex and has been the subject of numerous extensions
over the last decades. Perhaps the most intuitive extension is the one involving generic, finite
unions of sets for which there exists such an r. Indeed, if X,Y,X ∩Y admit curvatures measures,
then so does X ∪ Y , with Ci(X ∪ Y, ·) + Ci(X ∩ Y, ·) = Ci(X, ·) + Ci(Y, ·) as illustrated in
Figure 1.12.

General outline and contributions

Chapter II. This chapter begins by fixing terminology before focusing on the study of Lipschitz
maps in Euclidean spaces. We describe the major concepts of Lipschitz analysis that we use in the
following chapters, such as the Clarke gradients, or the co-area formula between rectifiable sets,
which generalizes the classical change of variables formula. The contribution of this chapter lies in
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Figure 1.12 – Example of the additivity of curvature measures with a cross.

the construction of approximate inverse flows between sublevel sets of Lipschitz maps, assuming
that their Clarke gradients stay uniformly away from zero.

Chapter III. The third chapter is devoted to the study of the relationship between the geometry
of a set and its associated distance function. We recall the definition of classical notions about the
geometry of subsets of Euclidean spaces, such as the reach of a set, and a relaxation of the reach
called the µ-reach. We also recall the definitions of tangent and normal cones. To prove that a
set with a positive µ-reach for some µ > 0 is not necessarily regular, we introduce a fractal-like,
injective curve K(θ) in R2, whose construction depends on a sequence of parameters (θi)i∈N. We
prove that for every 0 < µ < 1, there exists a choice of parameters such that K(θ) has an infinite
µ-reach. We show that further choices of θ can yield an unrectifiable curve, or a rectifiable curve
such that the normal bundle of its offset K(θ)ε has length diverging to ∞ as ε tends to 0.

We define the class of complementary regular sets as subsets of Rd having a positive µ-reach
for an arbitrary µ ∈ (0, 1) verifying other regularity conditions on their complement set. We prove
that complementary regular sets coincide with offsets of sets at regular value of their distance
function. We show further that this condition is equivalent to being the sublevel set of a semi-
concave function at one of its regular values. Another contribution is an identity linking the normal
cones of a complementary regular set and the Clarke gradient of its associated distance function.

Chapter IV. In the fourth chapter, we extend the classical results of Morse theory to C2, real-
valued functions on Euclidean spaces restricted to complementary regular sets as defined in Chap-
ter 3. This result obtained through a careful study of certain Lipschitz maps built by elementary
operations involving distance functions, and is independent of persistent geometry. It will be used
as a crucial lemma for the inference bounds of Chapter 7.

Chapter V. The fifth chapter is devoted to persistence theory. It begins with an introductory
section containing reminders about classical results of homology used in persistence theory, as
well as an exposition of the classical framework of persistent homology. The second section
serves as an introduction to the fundamental concepts of persistence theory to non-specialists. In
the third section, we are interested in the concept of image persistence. Our contribution lies in
the proof of a stability theorem on image persistence diagrams.
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Chapter VI. The sixth chapter is dedicated to the curvatures of subsets of Euclidean spaces. It
consists in an introduction to the concept of curvatures, including the definition of curvatures for
the class of complementary regular sets. Using considerations from geometric measure theory, we
prove that restricted to a complementary regular set, almost all distance-to-a-point functions and
almost all height functions are Morse. We also compare the properties of curvature of comple-
mentary regular sets with the existing literature on curvatures using the language of the so-called
normal cycles described in the annex.

Chapter VII. This chapter gathers the results and definitions of the previous chapters to
finally follow the precepts of persistent geometry. We approximate the intrinsic volumes
V0(X), . . . , Vd(X) of a set X ⊂ Rd, which are quantities related to its curvatures. More pre-
cisely, let X be a set of positive µ-reach and let Y be an approximating set. We build quantities
V ε
i (Y ) from Y ε, Y 3ε such that when dH(X,Y ) ≤ ε ≤ 1

4 reachµ(X), we have:⃓⃓⃓
Vi(X2ε) − V ε

i (Y )
⃓⃓⃓

= O(ε/µ),

where the constant in the big O is a function of the curvatures of X2ε. Using a similar method, we
are able to show under additional regularity conditions on X that we also have:⃓⃓⃓

Vi(X2ε) − Vi(X)
⃓⃓⃓

= O(ε/µ),

thereby showing that we can effectively estimate the intrinsic volumes of X from the knowledge
of an approximating set Y . These proofs are followed by a discussion on the minimal regularity
conditions necessary to guarantee this rate of convergence following the same method. We also
discuss the tractability of the construction.

Annex. Although not required to obtain the geometric inference result of Chapter 7, currents pro-
vide a concise framework to represent the curvatures of Euclidean subsets. The annex is dedicated
to the description of basic concepts surrounding currents, which we use at the end of Chapter 6
and Chapter 7.



CHAPTER 2
General terminology

and tools from Lipschitz
analysis

We fix various notations and define some terminology of several mathematical fields used
throughout this thesis. We focus in particular on Lipschitz applications, listing a handful
of lemmas used in further chapters. Using the concept of Clarke gradients, we build
so-called approximate inverse flows of a Lipschitz map. Parametrized to the arc-length,
their trajectories provide continuous deformations between sublevel sets of the Lipschitz
map, at a speed controlled by the distance to zero of the Clarke gradient.
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2.1 General notations and terminology

Notations for Euclidean spaces. Let d ≥ 1. In this thesis, we equip Rd with its canonical scalar
product ⟨·, ·⟩. The Euclidean norm it induces will be denoted by ||·||, while the absolute value over
R will be denoted by |·|. The Euclidean metric provides a topology to Rd and any of its subsets.
For any set X included in Rd, we denote by int(X) the largest open subset of X and call it the
interior of X . In the same vein, X is the closure of X , which is the smallest closed subset of
Rd containing X . By a slight abuse of notation, we call complement set of X the closure of the
classical complement set of X , and we denote it by ¬X := Rd \X = Rd \ int(X).

Distance functions and offsets. For any subset X of Rd, its distance function dX is dX : x ↦→
inf{||x− a|| | a ∈ A}. For any positive real r, we define the r and −r tubular neighborhoods
(also respectively called offsets and counter offsets) of X as follows:

Xr :=
{︂
x ∈ Rd | dX(x) ≤ r

}︂
X−r :=

{︂
x ∈ Rd | d¬X(x) ≥ r

}︂
.

Figure 2.1 – A bass clef inflated (Xr) and eroded (X−r)

Convex sets and functions A set X in Rd is said to be convex when, for every pair x, y in X ,
the segment [x, y] := {λx + (1 − λ)y | λ ∈ [0, 1]} is included in X . When d = 1, this notation
coincides with the classical interval notation. For any interval I of R, a map f : I → R is said to
be convex if, for every x, yin I and λ ∈ [0, 1], we have

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (2.1)

When f is differentiable, convexity is characterized by its derivative f ′ being non-decreasing. A
map f : Rd → R is said to be convex on a subset U of Rd when the map f|I is convex for every
segment I included in U . A map is concave when its opposite is convex.

Cone, dual cones and convex hulls. A cone A in Rd is a set stable under multiplication by a
positive number, i.e., such that for all λ > 0, we have λA ⊂ A. Given any subset B of Rd,
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we denote by ConeB the smallest (for the inclusion) cone containing B, defined as the image
of [0,∞) × B by the scalar multiplication map (λ, x) ↦→ λx. We denote by ConvB the convex
hull of B, consisting in the smallest convex set of Rd containing B. The dimension of a cone or a
convex set is the dimension of the affine vector space it spans. The polar cone or dual cone of a
set B ⊂ Rd, denoted by Bo, is the convex cone defined by:

Bo := {u ∈ Rd | ⟨u, b⟩ ≤ 0 ∀ b ∈ B}.

The polar cone operation is idempotent on convex cones, as it notably verifies the identity (Bo)o =
Conv (ConeB) for any subset B of Rd.

Figure 2.2 – Cone, convex hull and convex
cone of a set X ⊂ R2.

Figure 2.3 – Dual cone and illustration of the
identity Conv(Cone(X)) = (Xo)o.

Distance to zero. Given a subset X of Rd, its distance to zero measures how far it is from
intersecting {0}. It is defined by ∆(X) := inf { ||x|| | x ∈ X} . In particular, when X is closed
and convex, the infimum ∆(X) is attained by a unique point in X which is the closest point to 0
in X .

Homotopy equivalences. Given two topological spaces X,Y , we say that two functions f, g :
X → Y are homotopic when there exists a continuous map H : [0, 1] ×X → Y such that for all
x ∈ X , H(0, x) = f(x) and H(1, x) = g(x). X and Y are said to be homotopy equivalent or to
share the same homotopy type when there exist two continuous maps ψ : X → Y , ϕ : Y → X
such that ϕ◦ψ and ψ◦ϕ are respectively homotopic to the identity maps ofX and Y . Furthermore,
when X ⊂ Y and ψ is the inclusion map X ↪→ Y , we say that Y deformation retracts onto X .
When a topological space is homotopy equivalent to a point, we say that it is contractible. Every
convex set in a normed vector space is contractible.

Singular and stratified sets. This document assumes basic knowledge of differential geometry
of subsets or Rd, i.e., the study of submanifolds of Euclidean spaces. We say that a subset of Rd
is singular when it is not a C1 submanifold of Rd nor a convex set.
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Figure 2.4 – A singular stratified set.

A classical example is the class of stratified sets. Although those are not studied per se in this
thesis, their properties will be compared to those of sets we study.

In Rd, a set is said to be stratified when it can be written as a disjoint, locally finite union of
C1 submanifolds of Rd of possibly varying dimensions satisfying Whitney’s condition A. More
precisely, for any sequence (xi) in of these submanifolds converging to a point y in another sub-
manifold, with tangent spaces Txi converging to a subspace T of Rd, the space T is included in
the tangent space at y.

Spatial and normal coordinates. Throughout this thesis, we will encounter several subsets of
Rd × Sd−1. We denote the respective projection maps onto the first and second coordinates by π0
and π1. We also call them spatial and normal coordinates.

Figure 2.5 – Projections onto spatial and normal coordinates

Properties satisfied almost-everywhere. We assume basic knowledge of measure theory. Re-
call that a property is said to be true almost everywhere in a set X for a measure ν when there
exists a ν-measurable set E ⊂ X with ν(E) = 0 containing the points of X which do not satisfy
the property. In this thesis, ν will either be the Lebesgue measure on Rd, in which case its mention
is implied, or them-dimensional Hausdorff measure Hm restricted to a subset of Euclidean space.

2.2 Analysis of Lipschitz functions

2.2.1 Lipschitz maps

When E,F are two normed vector spaces, a map f : U ⊂ E → F is said to be C-Lipschitz
when we have for every a, b ∈ U :

||f(a) − f(b)||F ≤ C ||a− b||E (2.2)

The map f is said to be Lipschitz when there exists a constant C ≥ 0 such that f is C-Lipschitz.
The best Lipschitz constant possible for f is:

sup
a,b∈U
a̸=b

||f(a) − f(b)||F
||a− b||E

.
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The map f is said to be locally Lipschitz when, for every compact set K ⊂ A, the restriction f|K
is Lipschitz.

The case where E = Rd, U is an open set of E and F = Rm is of particular interest. Such a
map f is said to be differentiable at x ∈ U when there is a linear map Dxf realizing the first order
expansion

f(x+ h) = f(x) +Dxf(h) + o(h),
where o(h) is a function of h such that limh→0 ||o(h)|| / ||h|| = 0. When F = R and f is differ-
entiable at x, by Riesz’ representation theorem, there exists a vector ∇f(x), called the gradient of
f at x, such that the first-order expansion can be written in the following way

f(x+ h) = f(x) + ⟨∇f(x), h⟩ + o(h).

When the map x ↦→ Dxf is continuous, we say that f is C1 over U . When this map is
Lipschitz, we say that f is C1,1. The concept of differentiable maps is related to that of Lipschitz
maps, as a C1 function is Lipschitz if and only if its gradient ∇f is bounded. The following
theorem states that the converse is true in a measure theoretical sense.

Theorem 2.1 (Rademacher’s Theorem [Fed69, Theorem 3.1.6]). Let U be an open subset of Rd
and let f : U → Rm be a Lipschitz map. Then f is differentiable almost everywhere in U .

When d = m = 1, any Lipschitz map is absolutely continuous, i.e., the map f ′ := ∇f is
Lebesgue integrable and we have f(b) − f(a) =

∫︁ b
a f

′(t) dt.

Definition 2.2 (Semi-convexity and semi-convexity). Let U be an open subset of Rd and let f :
U → R. We say that f is K-semi-convex when for every convex subset (or equivalently, on any
segment) V of U , the map

x ↦→ f(x) +K ||x||2

is convex. It is semi-convex when there exists a K > 0 such that it f is K-semi-convex. A
map f is said to be K-semi-concave (resp. semi-concave) when −f is K-semi-convex (resp.
semi-convex).

Semi-concave and semi-convex maps are locally Lipschitz, since concave/convex maps have
this property. Remark that a C2 map f isK semi-convex (resp. K semi-concave) if and only if the
matrix Hxf − K Id (resp. K Id −Hxf ) is positive semi-definite for every point x in the domain
of f .

2.2.2 Clarke gradient

Thanks to Rademacher’s theorem, we are in position to define the Clarke gradient of a locally
Lipschitz, real-valued function on an open set of Rd. The Clarke gradient is a set-valued map
first defined by Clarke in [Cla75] to generalize classical properties of differentiable functions to
Lipschitz ones.

Definition 2.3 (Clarke gradients of locally Lipschitz functions). Let U be an open set of Rd and
let ϕ : U → R be a locally Lipschitz function. Its Clarke gradient at x is the subset of Rd defined
as the convex hull of limits of the form ∇ϕ(x+ h), h → 0:

∂*ϕ(x) := Conv
(︃

lim
i→∞

∇ϕ(xi) | xi ∈ Rd → x, ϕ differentiable at xi for all i
)︃
.
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Every time we refer to the explicit definition of the Clarke gradient, the fact that ϕ needs to be
differentiable at any xi will be implied.

Proposition 2.4 (Basic properties of the Clarke Gradient). Let ϕ : Rd → R be a locally Lipschitz
function.

— By Rademacher’s theorem, ∂*ϕ(x) is non-empty for all x;
— If ϕ is R-Lipschitz around x, ∂*ϕ(x) ⊂ B(0, R);
— The Clarke gradient of ϕ is a singleton at a point x if and only if ∇ϕ is C1 at x, and in this

case we have
∂*ϕ(x) = {∇ϕ(x)};

— The map x ↦→ ∂*ϕ(x) is upper semi-continuous, i.e., for each x ∈ U , for every ε > 0,
there exists a δ > 0 such that ||x− y|| ≤ δ implies ∂*ϕ(y) ⊂

(︂
∂*ϕ(x)

)︂ε
.

Definition 2.3 is illustrated in Figure 2.6 below. Here the map ϕ : R2 → R is represented
in a portion of R2 by 5 encapsulating sublevel sets, growing towards the orange. Each boundary
between shades represents a level set. At any point where the sublevel set is smooth (such as b and
c) the gradient of f has direction perpendicular to the level set; at point a, the Clarke gradient is
the convex hull of the neighboring gradient.

Figure 2.6 – Clarke gradient from sublevel sets. The map ϕ grows towards the more orange
regions.

Critical points of differentiable functions are usually defined as points where the gradient
vanishes. This notion can be consistently extended to Lipschitz maps as having a Clarke gradient
containing 0.

Definition 2.5 (Critical points of Lipschitz functions). Let ϕ : Rd → R be a locally Lipschitz
function. We say that x ∈ Rd is a critical point of ϕ when 0 ∈ ∂*ϕ(x). A real c is a critical value
of ϕ when ϕ−1(c) contains a critical point of ϕ. Otherwise, we say that c is a regular value of ϕ.

This terminology will be justified by the approximate inverse flows of Proposition 2.9. The
condition 0 ∈ ∂*ϕ(x) is equivalent to ∆(∂*ϕ(x)) = 0. In practice, we prefer working with the
second characterization, as the map x ↦→ ∆(∂*ϕ(x)) has practical properties. Indeed, the upper
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semi-continuity of the Clarke gradient leads to the following proposition.

Proposition 2.6 (Semi-continuity of Clarke gradients). Let ϕ : Rd → R be a locally Lipschitz
function. If a sequence (xi)i∈N converges to x, we have

lim inf
i→∞

∆
(︂
∂*ϕ(xi)

)︂
≥ ∆

(︂
∂*ϕ(x)

)︂
.

Mimicking the definition of Ck-submanifold of Rd as local graphs of Ck functions for Lips-
chitz and C1,1 maps, we obtain Lipschitz submanifolds and Lipschitz domains.

Definition 2.7 (Lipschitz and C1,1 Domains). We say that X ⊂ Rd is a m-Lipschitz submanifold
(resp. a m-C1,1 submanifold) of Rd when around any point x of X , there exists an open subset U
of Rd containing x such that U ∩X is the graph of a Lipschitz (resp. C1,1) function Rm → Rd−m.

We say that X ⊂ Rd is a Lipschitz domain (resp. C1,1 domain) when int(X) = X and ∂X is
(d− 1)-Lipschitz (resp. C1,1) submanifold of Rd.

The classical implicit function theorem states that when the map ϕ : Rd → R is C1, the
condition that at a point x we have ∇ϕ(x) ̸= 0 is sufficient for the level set of ϕ around x to be
the graph of a C1 function. The same results hold when ϕ is Lipschitz, replacing the condition
with ∆(∂*ϕ(x)) > 0 and with the level set locally being the graph of a Lipschitz map. A global
version of this fact is the following.

Theorem 2.8 (Clarke’s Lipschitz implicit function theorem). Let ϕ : Rd → R be a proper, locally
Lipschitz function. Let ξ ∈ R be such that

inf
x∈ϕ−1(ξ)

∆(∂*ϕ(x)) > 0. (2.3)

Then ϕ−1(−∞, ξ] is a Lipschitz domain.

2.2.3 Approximate inverse flow of Lipschitz maps

Another property of smooth functions we want to generalize to Lipschitz maps is the existence
of maps akin to flows. Indeed, assume that ϕ is smooth and has a non-vanishing gradient. When
parametrized to the arc-length, the flow of −ϕ makes ϕ decrease at a rate ||∇ϕ|| as a function of
the time parameter. This fact, which easily extends to Riemannian geometry, is crucial in Morse
theory as it shows that ϕ−1(−∞, a] is a deformation retract of ϕ−1(−∞, b] when ∇ϕ does not
vanish in ϕ−1[a, b], with a < b. The following proposition, which is one of the contribution of this
thesis, describes an extension of this result to the case where ϕ is Lipschitz.

Proposition 2.9 (Approximate inverse flow of a Lipschitz function). Let a < b ∈ R. Let ϕ :
Rd → R be a Lipschitz function on ϕ−1(a, b]. Assume that

inf{∆(∂*ϕ(x)) | x ∈ ϕ−1(a, b]} = µ > 0.

Then for every ε > 0, there exists a continuous function

Cϕ :
{︄

[0, 1] × ϕ−1(∞, b] → ϕ−1(−∞, b]
(t, x) ↦→ Cϕ(t, x)

such that
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— For any s > t and x such that C(s, x) ∈ ϕ−1(a, b], we have

ϕ(Cϕ(s, x)) − ϕ(Cϕ(t, x)) ≤ −(s− t)(b− a)

— For any t ∈ [0, 1] and x ∈ ϕ−1(∞, a], we have Cϕ(t, x) = x
— For any x ∈ ϕ−1(−∞, b], the map s ↦→ Cϕ(s, x) is b−a

µ−ε -Lipschitz.
In particular, Cϕ(1, ·) is a deformation retraction between ϕ−1(−∞, a] and ϕ−1(−∞, b].

Proof.

Approximate inverse flows of Lipschitz maps have been used implicitly in several works
(see [Fu94]) without the need for explicit constants. A weaker form of our claim can be
found in section D of [KSC+20]. Here the constants have been optimized, and the proposi-
tion generalized from distance functions to Lipschitz functions. For the sake of completeness,
we display a full proof. Note that a result of the same type can be found in [PRZ19, Lemma 3.1].

Let ε > 0. For any x ∈ ϕ−1(a, b], by semi-continuity of the Clarke gradient we let Bx be
open ball centered in x such that ∂*ϕ(y) ⊂ ∂*ϕ(x)ε for any y ∈ Bx. Since ∂*ϕ(x) is a closed
convex set, there is a unique point W (x) in ∂*ϕ(x) realising the distance to 0 i.e., ||W (x)|| =
∆(∂*ϕ(x)). This is the closest point to 0 in ∂*ϕ(x). From the convexity of ∂*ϕ(x), we have:

∀u ∈ ∂*ϕ(x), ⟨u,W (x)⟩ ≥ ||W (x)||2 . (2.4)

The family {Bx}x∈ϕ−1(a,b] is an open covering of ϕ−1(a, b]. By paracompactness, there exists
a locally finite partition of unity (ρi)i∈I subordinate to this family, i.e., such that the support of
each ρi is included in one of the balls B(xi) with xi ∈ ϕ−1(a, b]. Use them to define the vector
field V as a smooth interpolation of normalized −W :

V (y) := −
∑︂
i∈I

ρi(y) W (xi)
||W (xi)||

. (2.5)

Obviously ||V (x)|| ≤ 1 and V is locally Lipschitz. Now by classical results there is a flow C
of V defined on a maximal open domain D in R+ × ϕ−1(a, b]. For any x ∈ ϕ−1(a, b] and any
ζ ∈ ∂*ϕ(x), we have:⟨︃

∂

∂t
C(0, x), ζ

⟩︃
≤ −

∑︂
i∈I

ρi(x) ( ||W (xi)|| − ε ) ≤ −µ+ ε. (2.6)

Define Dx via
(︁
R+ × {x}

)︁
∩ D =: Dx × {x} the maximal subset of R+ for which the flow

starting at x is defined. The set Dx is connected in R+ and we put sx = supDx, assuming this
is finite. Now the trajectory C(·, x) is 1-Lipschitz, meaning the curve s ↦→ C(s, x) is rectifiable.
We can thus define C(sx, x) as the endpoint of this curve, that is, C(sx, x) = lim

s→sx
C(s, x).

The function ϕ(C(·, x)) : Dx → [a, b] is Lipschitz and thus differentiable almost every-
where. Let (s, x) be in D with ϕ(C(·, x)) differentiable at s. Since we have C(s + h, x) =
C(s, C(h, x)), we can assume s = 0 without loss of generality. SinceC(·, x) has non-vanishing
gradient V (x) at 0, ϕ has a directional derivative ϕ′(x, V (x)) in direction V (x). From the work
of Clarke [Cla75, Proposition 1.4] we know that when the directional derivative exists, the
Clarke gradient acts like a maxing support set, that is:

ϕ′(x, V (x)) ≤ max
{︂

⟨ζ, V (x)⟩ | ζ ∈ ∂*ϕ(x)
}︂

≤ −µ+ ε (2.7)
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Any Lipschitz function is absolutely continuous, thus when s ≤ t ∈ Dx we can integrate the
previous inequality to obtain:

ϕ(C(s, x)) − ϕ(C(t, x)) ≤ −(µ− ε)(s− t) (2.8)

This yields ϕ(C(sx, x)) = a. This also implies sx needs to be finite, since reaching ϕ−1(a)
only takes a finite time. More precisely, we have sx ≤ b−a

µ−ε for all x ∈ ϕ−1(a, b].
We extend the flow to R+ × ϕ−1(−∞, b] by putting

C(t, x) :=
{︄
C(min(t, sx), x) when a < ϕ(x) ≤ b,
x else.

We will now show thatC is continuous at every point (s, x) ∈ R+×ϕ−1(−∞, b]. C is obviously
continuous inside its original domain D. C is continuous inside R+ ×ϕ−1(−∞, a) since in this
set C(t, x) = x. We now turn our attention to the other points. Let k be a Lipschitz constant for
ϕ over ϕ−1(a, b].
Let x ∈ ϕ−1(a, b] and let s ≥ sx. Let c > 0. For every δ > 0, there exists ρx(δ) > 0
such that for all y ∈ B(x, ρx(δ)), sy > sx − c (i.e. the original flow starting at y is well-
defined at time sx − c) and |ϕ(C(t, y)) − ϕ(C(t, x))| ≤ δ for any t ∈ [0, sx − c]. This implies
ϕ(C(sx − c, y)) ≤ a + δ + kc, which yields sy ≤ sx − c + kc+δ

µ−ε . And finally, for any (y, t)
such that |s− t| ≤ c and ||y − x|| ≤ ρx(δ), we have:

||C(y, t) − C(x, s)|| ≤ ||C(min(t, sy), y) − C(sx − c, y)||
+ ||C(sx − c, y) − C(sx − c, x)||
+ ||C(sx − c, x) − C(sx, x)||

≤ δ + kc

µ− ε
+ δ + c.

The only case left is when ϕ(x) = a. Then C(s, x) = x for all s ∈ R+. Since
u ↦→ max(a, ϕ(u)) is k-Lipschitz, we have sy ≤ k||x−y||

µ−ε . We can write:

||C(s, y) − C(s, x)|| ≤ ||C(s, y) − y|| + ||y − x|| ≤
(︃

k

µ− ε
+ 1

)︃
||x− y|| .

and thus C is continuous at (s, x). Finally, we reparametrize C to obtain Cϕ(t, x) =
C
(︂

(b−a)t
µ−ε , x

)︂
which yields a homotopy such that ϕ−1(−∞, a] is a deformation retraction of

ϕ−1(−∞, b].
□

We will see that any compact sublevel set of a Lipschitz function at a regular value are always
Lipschitz domains. The concept of weak regular value allows sublevel sets with empty interior.

Definition 2.10 (Weak regular values of a Lipschitz function). Let ϕ : Rd → R be a locally
Lipschitz function. We say that α is a weak regular value of f when there exist µ > 0, δ > 0 such
that α < f(x) ≤ α+ δ =⇒ ∆(∂*f(x)) ≥ µ.
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2.2.4 Co-area formula for rectifiable sets

The last property of smooth functions that we want to generalize to Lipschitz maps is that their
integrals are subject to change of variable formulas. The formula we use applies to any Lipschitz
maps, non-necessarily injective, between sets that are called rectifiable.

Definition 2.11 (Rectifiability). A set A included in Rd is said to be m-rectifiable when it can be
written A =

⋃︁∞
i=0Ai with Hm(A0) = 0 and where each Ai, i ≥ 1 is the image of a bounded

subset of Rm by a Lipschitz map.

Any m-Lipschitz submanifold of Rd is m-rectifiable as it is the union of a countable number
of patches of graphs of bounded subsets of Rm. The converse is not true, since m-rectifiable sets
contain m-submanifolds with self-intersections, or any set with Hm-measure zero.

A k-rectifiable set admits Hk-almost everywhere so-called approximate tangent spaces of di-
mension k [Fed69, 3.2.16] which coincide almost everywhere with the tangent cones defined
later in Section 3.3. Now let f be a Lipschitz map between two open subsets of Euclidean
spaces containing respectively V,W rectifiable subsets of respective dimension d and m, such
that f(V ) ⊂ W . Further assume that f is differentiable at x and that V admits an approximate
tangent space Tan(V, x) of dimension d. We let Jif|V (x) be the supremum of the volume of the
convex hull of Dxf(e1), . . . , Dxf(ei) when e1, . . . , ei run among the families of i orthonormal
vectors of Tan(V, x). In particular, when i = d, Jdf|V (x) is equal to the absolute value of the
determinant of Dxf restricted to Tan(V, x).

Then, the Co-area formula from Federer [Fed69, Theorem 3.2.22] states the following gener-
alization of the classical change of variable formula.

Theorem 2.12 (Co-area formula). Let V,W be respectively d and m-rectifiable subsets in Eu-
clidean spaces with d ≥ m, let f be a Lipschitz function defined on an neighborhood of V such
that f(V ) ⊂ W , and let g be a Hd-measurable function on V . Then, Hm-almost everywhere on
W , the set f−1(z) is Hd−m-measurable, and we have∫︂

V
g(x) Jmf|V (x) dHd(x) =

∫︂
z∈W

(︄∫︂
u∈f−1(z)

g(u) dHd−m(u)
)︄

dHm(z). (2.9)

When the context is clear, me might write Jif instead of Jif|V . A consequence of Co-area
formula is the following weak version of Sard’s theorem on Lipschitz maps:

Theorem 2.13 (Weak Sard’s theorem). Let V,W be d-rectifiable subsets in Euclidean spaces, and
let f be a Lipschitz function between the previous Euclidean spaces such that f(V ) = W . Let
A := {x ∈ V | Jdf|V (x) = 0}. Then

Hd(f(A)) = 0. (2.10)

Proof.
By the previous theorem, with g = 1, for any Hd-measurable set U we have:∫︂

V ∩U
Jdf(x) dHd(x) =

∫︂
W

⎛⎝ ∑︂
z∈f−1(y)∩U

1

⎞⎠dHd(y)

≥
∫︂
f(U)

1 dHd(y) = Hd(f(U)).

With U = A, the left-hand side is zero.
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□



CHAPTER 3
Geometric tools, µ-reach

and complementary
regular sets

La géométrie est l’art de raisonner juste sur des figures fausses.

The geometry of subsets of Euclidean spaces has been studied for a long time, and the
range of concepts at our disposal is broad. We describe several tools, such asdistance
functions associated to closed sets, which allow the use of Lipschitz analysis concepts
in the study of their geometry and lead to the definitions of the reach and the µ-reach
of a set. We show that having a positive µ-reach does not necessarily entail regularity
properties, as we give explicit constructions of pathological, fractal-like compact sets
satisfying this assumption. Other tools include tangent and normal cones, which are
generalizations of tangent spaces and their associated orthogonal complements, to sets
which are not necessarily differential manifolds. We notably prove an identity between
the normal cones of a set with positive µ-reach and the Clarke gradient of its distance
function. Using the previous tools, we define the class of complementary regular sets,
which are the sets for which we will extend Morse theory in Chapter 4. We characterize
them as being the offsets of compact sets at a regular value of their distance functions.
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3.1 Distance functions and their Clarke gradients

3.1.1 Distance functions and sets with positive reach

For any subset A of Rd, we define the distance to A function dA : Rd → R+ as:

dA : x ↦→ inf
a∈A

||x− a|| . (3.1)

We saw earlier that closed positive sublevel sets of dA were called offsets of A, denoted by Ar :=
d−1
A (−∞, r] for any positive r. The class of compact subsets of Rd is endowed with a metric dH ∗

called the Hausdorff distance, defined as follows:

dH(A,B) := inf{t ∈ R | B ⊂ At and A ⊂ Bt}. (3.2)

This quantity coincides with ||dA − dB||∞ = supx∈Rd |dA(x) − dB(x)|.

We denote by ΓA(x) := {a ∈ A | dA(x) = ||x− a||} the set of closest points to x in A. This
set is non-empty when A is closed. When ΓA(x) contains a unique point, we denote this point by
ξA(x). The medial axis MA of a closed set A consists in the points of Rd with strictly more than
one point in ΓA(x), i.e., such that

MA :=
{︂
x ∈ Rd | Card(ΓA(x)) > 1

}︂
.

As a consequence of the triangular inequality, distance maps are 1-Lipschitz, and thus differ-
entiable almost everywhere in Rd by Rademacher’s theorem. The differentiability of dA is related
to projection onto A in the following sense:

Proposition 3.1 (Differentiability of distance maps [Fed59, Theorem 4.8]). Let A be a closed
subset of Rd. Then dA is differentiable at a point x /∈ A if and only if x has a unique closest point
ξA(x) in A, and we have:

∇dA(x) = ξA(x) − x

||ξA(x) − x||
. (3.3)

The map dA is differentiable at x ∈ A if and only if x ∈ int(A), in which case ∇dA(x) = 0.

In particular, this shows that the Lebesgue measure of the medial axis of any subset of Rd is
zero. Note that there exists compact subsets of Rd whose medial axis is dense in their complement
set (see [Mér09, Lemma I.2]).

The differentiability of dA inside an offset At (but outside A) has strong consequences on the
regularity of A, notably endowing it with well-defined curvatures, as we will see in Chapter 6.
This assumption is equivalent to the existence of a map ξA : At → A associating each point to its
closest point.

Definition 3.2 (Reach of a set). The reach of a subset A of Rd is defined as the supremum of the
size of offsets for which the projection onto the closest point is well-defined.

reach(A) := sup{t ∈ R | For all x ∈ At \A,Card(ΓA(x)) = 1}. (3.4)

∗. The notation dH will always refer to the Hausdorff distance, and never to the distance to a set called H .
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The 1959 article Curvature Measures of Federer [Fed59] was the first to underline the impor-
tance of the class of sets with positive reach. This class contains compact submanifolds of Rd and
C1,1-domains with compact boundaries. Intuitively, any compact stratified subset of Rd whose
corners are convex has positive reach. Compact convex sets of Rd are characterized by having
reach +∞.

Figure 3.1 – The set on the left has reach greater than r. The one on the right has reach 0 because
of the concave corner.

Non-empty intersections of balls of a bounded size with a set of positive reach are necessarily
contractible.

Proposition 3.3 (Non-empty intersection of small balls with sets with positive reach are con-
tractible [RZ19, Lemma 5.5]). Let A ⊂ Rd and r ∈ R be such that 0 < r < reach(A). Then
A ∩B(x, r) is contractible when x ∈ Ar and empty otherwise.

Another consequence of a set A having positive reach is that the associated distance map dA
is semi-convex on small neighborhoods of A [Kle81, Satz 2.8]. We precise this fact by giving
explicit bounds on the semi-convexity constant and the size of neighborhood, which, to the best of
our knowledge, is an elementary new result.

Proposition 3.4 (Reach and semi-convexity of the distance function). Let A ⊂ Rd and let 0 ≤
q < r ≤ reach(A). Then on Aq \A, the function x ↦→ dA(x) + 1

r−q ||x||2 is convex.

Proof.
Let x, y be in Aq \ A and let a, b be their respective projection on A, with c, c′ their distance to
A. Since reach(Ac) ≥ r − c and the same with c′, we have ⟨∇dA(x), x− y⟩ ≥ − ||y−x||2

2(r−c) and

⟨∇dA(y), y − x⟩ ≥ − ||y−x||2
2(r−c′) . These two inequalities, along with c, c′ ≤ q, yield

⟨∇dA(x) − ∇dA(y), x− y⟩ ≥ − 1
r − q

||x− y||2 . (3.5)

Now we want to show that for any segment [x, y] lying in Aq \A, the map

ϕr−qA : t ↦→ dA(ty + (1 − t)x) + ||ty + (1 − t)x||2

2(r − q) (3.6)

is convex. Assuming that the segment [x, y] lies insideAq \A, this map isC1 and Equation (3.5)
shows that its derivative is non-decreasing.
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□

Federer proved that below the reach, the gradient of dA was Lipschitz.

Proposition 3.5 (Small offsets of a set with positive reach are C1,1 domains [Fed59, Theorem 4.8,
(8)]). Let A be a set with reach(A) = r > 0. Then for any 0 < q < r, the restriction of ξA to Aq

is r
r−q -Lipschitz. As a consequence, Aq is a C1,1-domain.

Remark 3.6 – Sets of positive reach have been the subjects of many studies, and have been proven
to enjoy many geometric properties generalizing that of manifolds and convex sets, such as their
curvatures (see Chapter 6) or their geodesics [BLW19]. Similar properties are satisfied by stratified
sets (defined Section 2.1). However, these classes are distinct and there is no inclusion of one into
the other. Think for example of a piecewise, half-spiral, with ever-increasing precision around its
center. This objet is convex, but its stratification cannot be locally finite. On the other hand, any
stratified with a non-convex corner has reach zero.

3.1.2 Clarke gradients of distance functions

Sets with reach zero are plentiful, as any set with a non-convex corner has reach zero. At any
point x outside A, it is well-known (see [Fu85, Cla75]) that one can describe the Clarke gradient
∂*dA(x) as a function of the closest points ΓA(x), as illustrated in Figure 3.2.

Proposition 3.7 (Clarke gradient of dA outside A). Let A be a closed subset of Rd. Then for any
x /∈ A, we have

∂*dA(x) = Conv
{︄

z − x

||z − x||

⃓⃓⃓⃓
⃓ z ∈ ΓA(x)

}︄
. (3.7)

Proof.

Let xn be a sequence of points where dA is differentiable converging to x such that ∇dA(xn)
has a limit v. For n big enough, xn /∈ A and we have ∇dA(xn) = xn−ξA(xn)

dA(xn) . Since dA(xn)
converges to dA(x) andA is closed, any accumulation point z of the sequence ξA(xn) converges
belongs to A. Furthermore, v = x−z

dA(x) is a unit vector, yielding z ∈ ΓA(x).

□

When ∆(∂*dA(x)) is bounded away from 0 in a neighborhood of a setX , the approximate in-
verse flows of Proposition 2.9 show that there are continuous trajectories inAt\Awhose endpoints
are in A, as illustrated in Figure 3.3.

The Clarke gradient of dA is related to the generalized gradient ∇A of Lieutier [Lie04], which
is defined as follows.

Definition 3.8 (Generalized gradient of the distance function). Let A be a closed subset of Rd.
The generalized gradient of dA, which we denote by ∇A, is defined by:

∇A(x) := x− cA(x)
dA(x) , (3.8)

where cA(x) is the center of the smallest ball containing ΓA(x).
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Figure 3.2 – Configuration of ∂*dX(x). Figure 3.3 – Approximate flow of −dY .

The norm of ∇A(x) is the cosine of the angle between cA(x), x and any point at distance
dA(x) of x lying in the affine hyperplane orthogonal to x− cA(x) containing cA(x), as illustrated
in Figure 3.4. Moreover, the generalized gradient ∇A(x) coincides with the closest point to 0 in
∂*dA(x).

The main point of [Lie04] was that the Euler scheme of the map ∇A : Rd \ A → Rd con-
verges to a continuous flow. Parametrized to the arc length, this flow has 1-Lipschitz trajectories
that increase dA at the rate ||∇A||. However, this flow cannot be reversed as it is not injective,
explaining the use of approximate inverse flows of Proposition 2.9 to build distance-decreasing
Lipschitz trajectories.

Figure 3.4 – Configuration of ∇X(x). Figure 3.5 – Flow of ∇Y .

3.2 Sets with positive µ-reach

3.2.1 Definition and history

The reach of a subset A of Rd can equivalently be defined as the maximum of the sizes of
offset for which the Clarke gradient of dA stands at distance 1 to zero. Replacing 1 by an arbitrary
threshold µ ∈ (0, 1] in the previous definition gives the µ-reach of A.
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Definition 3.9 (µ-reach of a set). Let µ in (0, 1] and A ⊂ Rd. The µ-reach of A is:

reachµ(A) := sup
{︂
t ∈ R | ∀x ∈ At \A, ∆(∂*dA(x)) ≥ µ

}︂
. (3.9)

For any A, the map µ ↦→ reachµ(A) is non-increasing, and this quantity coincides with the
previously defined reach when µ = 1 .

Graphs of Lipschitz functions all have positive µ-reach for some µ > 0 depending on their
Lipschitz constant.

Proposition 3.10 (µ-reach of the graph of Lipschitz function). Let f : Rd−1 → R be a k-Lipschitz
function and let l(k) = (1 + k2)−1. Then reachl(k) (graphf) = +∞.

As a consequence, compact Lipschitz submanifolds and Lipschitz domains with compact
boundaries of Rd all have a positive µ-reach for some µ > 0.

Proof.

Let x ∈ Rd \ graphf and let a, b be two closest points to x in the graph. Let θ be the half-angle
between a, x and b. The graph of f lies outside the ball centered in x with radius dgraphf (x),
but contains a and b. Around each point (z, f(z)), the graph of f is contained in the cone
{(z1, z2) | ||z2 − f(z)|| ≤ k ||z1 − z||}, as illustrated in green around the point b of Figure 3.6.

Figure 3.6 – Bound on the angle between two closest point of the graph of a Lipschitz map.

The intersection of the cone with the complement set of the ball of radius dgraphf (x) is non-
empty, as it contains the graph of the function. This yields tan(θ) ≤ k which is equivalent to

1√
1+k2 ≤ cos(θ).

□

Although easily defined, the µ-reach has only been recently studied in detail with the emer-
gence of geometric inference [CCLT07, ABL23, Lie04, KSC+20]. It is closely related to the
β-reach of [Cot24]. The problem of estimating the µ-reach of a set from a sampling was studied
in [ABL23].
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Figure 3.7 – The set on the left has positive µ reach for µ small enough. On the right, the set has
µ-reach 0 for all µ, but a positive weak feature size.

The main property of sets with a positive µ-reach that we will use is the existence of approx-
imate inverse flows of it distance function Proposition 2.9 linking A to its tubular neighborhoods
At when 0 < t < reachµ(A). In the geometric inference literature, one may also encounter the
so-called the weak feature size:

Definition 3.11 (Weak feature size of a set). Let A be a closed subset of Rd. Its weak feature size
[CL05] is:

wfs(A) := sup
{︂
t ∈ R+ | 0 < dA(x) ≤ t =⇒ ∆(∂*dA(x)) > 0

}︂
. (3.10)

This quantity has been used to infer topological information on small offsets of A [CL05,
CSEH05]. Sets with positive weak feature size might have µ-reach zero for every µ > 0, such
as the union of two balls intersecting in one point. Any subanalytic set of Rd has a positive weak
feature size [Fu94]. The difference between having a positive µ-reach for an arbitrary µ in (0, 1)
and having a positive weak feature size lies close to A: for any 0 < t ≤ s < wfs(A), by the
semi-continuity of the Clarke gradient ∆ ◦ ∂*dA is uniformly bounded from below on As \ At,
implying that As deformation retracts onto At. However, As might not deformation retracts onto
A (see Warsaw’s circle, [Spa66, Example 2.4.8], which does not have the homotopy type of a
circle contrary to its small offsets).

Any set with a positive µ-reach must have a "well-behaved" topology, in the following sense.

Proposition 3.12 (Homotopy type of sets with positive µ-reach). Let µ > 0 and A ⊂ Rd be such
that reachµ(A) > 0. Then A has the homotopy type a CW-Complex. In particular, its homology
groups are finitely-generated.

Proof.

The tubular neighborhood At deformation retracts into A for t small enough, and every Eu-
clidean neighborhood retract has the homotopy type of a CW-Complex [Hat02].

□

The complement of small offsets of sets with positive µ-reach or weak-feature size have posi-
tive reach.
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Proposition 3.13 (Complement of offsets have positive reach). Let A ⊂ Rd and let 0 < t ≤
wfs(A). Then ¬(At) has a positive reach. Moreover, if t ≤ reachµ(A) for some µ ∈ (0, 1], then
we have

reach(¬At) ≥ µt. (3.11)

Proof.

For the first part, remark that d2
A is semi-concave Proposition 3.39. The result follows from the

classical fact that sublevel sets of semi-convex functions at weak regular values have positive
reach, which we prove later at Corollary 3.41. The second assertion, more involved, can be
obtained using the flow of Lieutier as [CCLT07, Theorem 4.1] or using a characterization of the
reach as the supremum of certain functionals as in [RWZ23, Lemma 6.3].

□

However,A having a positive µ-reach for some positive µ is not a strong regularity assumption,
in the sense that for any µ ∈ (0, 1) there exist fractal-like objects with positive µ-reach. The next
section is dedicated to an explicit construction of such objects.

3.2.2 Construction of a non-rectifiable curve with positive µ-reach.

In this section, we prove that for any µ ∈ (0, 1), there exists a compact, unrectifiable contin-
uous curve K in R2 such that reachµ(K) = ∞. This set is obtained as the limit of a sequence
of compact piecewise linear curves (Kn)n∈N built by induction. The induction steps depend on
a sequence of angle parameters (θi)i∈N. We also show that for another choice of parameters, the
limit curve is rectifiable, but its small offsetsK(θ)ε have total curvature going to infinity as ε → 0.

Definition 3.14 (Inductive definition of K). The sequence of compact subsets Kn of R2 is ob-
tained by induction as follows.

— The set K0 consists in a segment of length 1, oriented by the choice of the starting point
(0, 0) and the ending point (1, 0).

— Each set Kn+1 is obtained from Kn by either folding each segment of Kn in half upwards
when n is even or downwards when it is not, each with a folding angle of θn. This is
illustrated in Figure 3.8.

We name some points, segments and triangles further pertaining to our analysis.

Definition 3.15 (Further definitions). Let n be a natural number.
— We define (Li,n)1≤i≤2n to be the set of all segments among the piecewise linear curve Kn,

with order induced by its starting point (0, 0) and its ending point (1, 0).
— We define {pi,n | 0 ≤ i ≤ 2n} to be the ordered set of extremities of the segments, with

pi−1,n (resp. pi,n) being the starting (resp. ending) point of Li,n.
— When n ≥ 1, we define a collection Tn of 2n−1 triangles Ti,n of R2 defined by

Ti,n := Conv(p2i,n, p2i+1,n, p2(i+1),n).

It is bounded by the three segments Li+1,n−1, L2i+1,n, L2i+2,n and any segment
[pk,n, pk+1,n] is included in T⌊k/2⌋,n.

The length of Kn can be iteratively computed.
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Figure 3.8 – Folding process to obtain K2 from K0.

Proposition 3.16 (Length of Kn). The length of the piecewise linear curve Kn is:

H1(Kn) =
n−1∏︂
i=0

1
cos(θi)

.

This quantity is non-decreasing as a function of n. It is bounded as n goes to infinity if and only if
the sum

∑︁
θ2
i diverges. Each segment of Kn has the same length ln := H1(Li,n) = 1

2n H1(Kn).

Proof.

By elementary trigonometry, the sum of the length of the two segments obtained by folding a
segment from Kn is cos(θn)−1 times the length of the previous segment.

□

When the angles bounded above by π/4 and non-increasing, triangles in Tn+1 are subtriangles
of the ones in Tn, as precised in the following proposition.

Proposition 3.17 (Partial order on triangles). If θn+1 < θn ≤ π/4, then the intersection T2i,n+1 ∩
T2i+1,n+1 consists in one point, and both T2i,n+1, T2i+1,n+1 are included in Ti,n for any 0 ≤ i ≤
2n − 1.

Moreover, if θ is non-increasing and strictly bounded from above by π/4, two triangles in Tn
have non-empty intersection if and only if they have consecutive indices, and the partial order
induced by inclusions T2i,n+1, T2i+1,n+1 ⊂ Ti,n for n ∈ N, 0 ≤ i ≤ 2n − 1 endows T := ∪n∈NTn
with a binary tree structure.

In particular, if n ≤ m the curve Km is included into the unions of triangles at step n, i.e.,
Km ⊂

⋃︁2n−1
i=0 Ti,n.

Proof.

The upper angle of a triangle Ti,n at a step n is π − 2θn. If θn+1 ≤ θn ≤ π/4, then θn+1 is
smaller than the half-angle π−2θn

2 , yielding that T2i,n+1, T2i+1,n+1 are respectively included into
the left and right half of Ti,n with respect to the bisector of the upper vertex. This is illustrated
in Figure 3.9.
If θ is non-increasing and strictly bounded from above by π/4, this reasoning can be iterated.
Further subtriangles which are not consecutive do not keep their intersection point.

□

Under these assumptions, the sequence of curvesKn converges to a compact continuous curve
K.

Proposition 3.18 (Convergence properties). If θ is non-increasing and bounded from above by
π/4, the sequence Ki converges to a compact continuous curve K of R2 which does not self-
intersect.
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Figure 3.9 – Inclusions T2i,n+1, T2i+1,n+1 ⊂ Ti,n.

Proof.

By assumption, c := lim supi→∞(2 cos(θi))−1 < 1/ For every n ∈ N, the set Kn is a contin-
uous curve which can be parametrized as a piecewise linear function fn : [0, 1] → R2 interpo-
lating linearly between fn

(︂
k

2n

)︂
= pk,n for every 0 ≤ k ≤ 2n. By the iterated inclusions of

the previous lemma, if m > n, the set fm
(︂[︂

k
2n ,

k+1
2n

]︂)︂
is included in the triangle Tk,n, while

fn
(︂[︂

k
2n ,

k+1
2n

]︂)︂
is exactly the segment Conv(pk,n, pk+1,n). All in all, for any t ∈

[︂
k

2n ,
k+1
2n

]︂
,

we have:

||fn(t) − fm(t)|| ≤ sup{||y − z|| | y ∈ [pk,n, pk+1,n], z ∈ T⌊k/2⌋,n} ≤ diam(T⌊k/2⌋,n).

By the assumption we have c < 1, which implies that the largest side of a triangle at step n is
ln = O(cn) and so is its diameter.
The sequence of continuous functions fn is thus Cauchy with respect to the infinity norm over
maps [0, 1] → R2. Letting f be its limit, the set K := f([0, 1]) is compact. Moreover, for any
s < t in [0, 1], points f(s) and f(t) belong to non-intersecting triangles at any step n such that
t− s > 2−n, which implies that f is injective.

□

When the sequence H1(Kn) diverges to infinity, the limit curve K is not rectifiable.

Proposition 3.19 (Unrectifiablity of K). If θ is non-increasing, bounded from above by π/4 and
the sum

∑︁
θ2
i diverges, then the limit continuous curve K is non-rectifiable, i.e., H1(K) = ∞.

Proof.

Since K = f([0, 1]), its 1-Hausdorff measure is equal to the total variation of f . Recalling that
f(k/2n) = pk,n for 0 ≤ k ≤ 2n, we have:

H1(K) = sup
0≤a0<···<an≤1

n∈N

n−1∑︂
i=0

||f(ai+1) − f(ai)||

≥ sup
n∈N

(︄2n−1∑︂
k=0

||pk+1,n − pk,n||
)︄

≥ sup
n∈N

H1(Kn) = ∞.
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□

Nevertheless, when the sequence of angles tends to 0, the limit curve has necessarily Hausdorff
dimension 1.

Proposition 3.20 (Hausdorff dimension 1). Assume that the sequence (θi) tends to 0. Then for
every s > 1,

Hs(K) = 0. (3.12)

Proof.

Let s ∈ R. The limit set K is included in ∪0≤i≤2n−1Ti,n for every n ∈ N, and as such each
point of K belongs to infinitely many triangles of the form Ti,n. Per classical result on the
upper-bounding of Hausdorff dimensions, we know that:∑︂

n≥1,0≤i≤2n−1
diam(Ti,n)s < ∞ implies Hs(K) = 0.

Thanks to previous computations, the left-hand side can be expressed as

∑︂
n∈N

2nlsn =
∑︂
n∈N

2n(1−s)
n∏︂
i=1

cos(θi)−1.

Terms in the right-hand side sum are equal to exp (ln(2)n(1 − s) − s
∑︁n
i=1 ln(cos(θi)). As-

suming θi → 0 we have as functions of n

n∑︂
i=1

ln(cos(θi)) ∼ 1
2

n∑︂
i=1

θ2
i = o(n)

which yields the desired result.

□

Using the folding process, we can bound the angles of two closest points a, b inK to any point
x /∈ K.

Proposition 3.21 (Choice of θ to obtain a non-rectifiable curve with positive µ-reach). Let µ ∈
(0, 1). If the sequence θ is non-increasing, is bounded from above by

(︂
1−µ

8

)︂1/2
and if the sum∑︁

i∈N θ
2
i diverges, then the compact set K obtained by the folding process is a non-rectifiable

continuous curve such that reachµ(K) = ∞.

Proof.

By Proposition 3.18, the limit curve K is properly defined as θ is bounded from above by(︂
1−µ

8

)︂1/2
< π/4. Let x ∈ R2 lie in the medial axis of K, and let a, b be two distinct elements

of the set of closest point to x in K. Let

n := sup {m | ∃ j such that a, b ∈ Tj,m}

be the largest step m for which a and b belongs to a same triangle in Tm. This number is
well-defined since a, b belong to T0 and is finite as the diameter of each Ti,m goes to 0 when
m → ∞. Let i be the index of this triangle in Tn. Without loss of generality, we can assume
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that a ∈ T2i,n+1 and b ∈ T2i+1,n+1.

Now the curve K inside T2i,n+1, T2i+1,n+1 is symmetric around the bisector of Ti,n at the point
of intersection T2i,n+1 ∩ T2i+1,n+1, meaning that x lies in this bisector. We want to bound the
cosine of the half-angle between the three points a, x and b. Without loss of generality, after
translating and rotating, we obtain the configuration of Figure 3.10.

Figure 3.10 – Schematic configuration of a, b and x.

Let Bmax be the largest disk centered in x which does not go above the segment L. By ele-
mentary trigonometry, Bmax has radius cos(θ) ||x||. Since K is a continuous curve included in
the triangle T which connects the extremities of the segment L,K crosses Bmax and Bmax ∩ T
contains a.
Since the sequence θ is non-increasing, the set Bmax ∩ T is included in Bmax ∩ C where C
is the cone of points lying in between the lines ∆1,∆2 with respective angles θ and 2θ to the
horizontal line. Without loss of generality, we can take the top of the triangle to be the origin
as in Figure 3.11. For any u ∈ Bmax ∩ C, the cosine of the half angle between u, x and the
symmetric of u by the bisector is exactly

π2(u− x)
||u− x||

(3.13)

where π2 : R2 → R is the projection onto the second coordinate.
If C intersects Bmax only in its upper left quarter, the minimum of this quantity is attained at
the second intersection of Bmax with the line ∆2, as this point has the largest distance to x and
the difference between its second coordinate and that of x is the smallest among Bmax ∩ C.
We denote this point v. Its coordinates are obtained solving for the largest solution t+ of the
equation ||tw − x||2 = cos(θ)2 ||x||2 where w is the unit vector with the same direction as ∆2
going downward. Since ⟨w, x⟩ = sin(2θ) ||x||, this amounts to solving

t2 − 2t sin(2θ) ||x|| + sin2(θ) ||x||2 = 0. (3.14)

From this we obtain
π2(v)
||x||

= −sin(2θ)t+

||x||
= − sin(2θ)2 − sin(2θ)

√︂
sin(2θ)2 − sin(θ)2

and the previous condition is valid if and only if this last quantity is larger than −1.
Since ||v − x|| = cos(θ) ||x|| as v belongs to ∂Bmax, we are in position to compute and bound
the half angle between v, x and the symmetric of v through the bisector.

π2(v − x)
||v − x||

= 1 − sin(2θ)2 − sin(2θ)
√︁

sin(2θ)2 − sin(θ)2

cos(θ) ≥ 1 − 8θ2. (3.15)
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Figure 3.11 – Configuration of v and Bmax ∩ C.

This quantity is larger than µ when θ ≤
(︂

1−µ
8

)︂1/2
. In this case, the cone C intersects the disk

Bmax only in its upper left quarter which means, as argued before, that the cosine of the half
angle between any point of C ∩ Bmax and x and its symmetric point through the bisector is
bounded below by the one of v, which is bounded by µ.

□

In particular, for any µ ∈ (0, 1), letting θn :=
(︂

1−µ
8(n+1)

)︂1/2
for every natural number n we

obtain the desired result on K:

Theorem 3.22 (Unrectifiable compact set with positive reach.). Let µ ∈ (0, 1). Then there exists
a compact unrectifiable curve K in Rd such that reachµ(K) = ∞.

Finally, we show that the length of the graph of ∂*dX on ∂Kδ tends to ∞ when δ goes to 0.
First, we prove the following lemma.

Lemma 3.23 (Corners of small offsets ofK). Let θ be a non-increasing sequence of positive reals
bounded by π/4. Then for all n ∈ N, there exists a δn > 0 such that for every 0 < δ ≤ δn, for
every 0 ≤ i ≤ n there are sets Mδ

i containing 2i points in ∂Kδ such that, with ν : x ↦→ x
||x|| , we

have
• H1

(︂
ν(∂*dK(x))

)︂
≥ 2(2 −

√
3)θi for each i ∈ Mδ

i ;
• Mδ

i ∩ Mδ
j = ∅ if i ̸= j.

Proof.

Let n ∈ N and 0 ≤ i ≤ n. Any point on a bisector of a triangle at step i has closest points in K
symmetric to the bisector, meaning that ν(∂*dK(x)) is a subset of S1 with length at least m(θ)
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given by the first intersection of the line ∆2 with ∂Bmax, see Figure 3.11.

m(θ) = 2 cos(θ)−1
(︃

sin(2θ) −
√︂

sin2(2θ) − sin2(θ)
)︃

≥ 2(2 −
√

3)θ.

Now for any δ small enough compared to the height of a triangle at step n, these bisectors
intersect with Kδ in every triangle built before step n.

□

Proposition 3.24 (Normal bundle of Kδ). Let θ be a non-increasing sequence of positive reals
bounded by π/4 such that

∑︁n
i=0 2iθi diverges. Then H1(Nor(Kδ)) diverges to ∞ when δ tends to

0.

Proof.

When δ ≤ δn, by the previous lemma we have

H1(Kδ) ≥
∑︂

x∈
⋃︁

i≤n
Mδ

i

H1(Nor(X,x) ∩ S1)

≥
n∑︂
i=0

(2 −
√

3)2i+1θi.

□

Remark 3.25 – The fact that for each µ ∈ (0, 1) there exists a non-rectifiable curve with posi-
tive µ-reach was obtained in [PRZ19, Example 3.5] using self-similar fractals. This more direct
construction is equivalent to ours with the choice of a constant sequence of parameters. Our con-
struction was obtained independently, and we believe that we can adapt it to build an unrectifiable
curve of R2 with positive µ reach for any µ ∈ (0, 1).

3.3 Tangent cones, normal cones and normal bundles.

This section is devoted to three classical notions in geometric measure theory, namely tangent
cones, normal cones and normal bundles. Normal cones and tangent cones were first introduced
by Federer in [Fed59] in an effort to generalize the concept of tangent spaces and normal bundles
of submanifolds of Euclidean spaces to any set of Rd.

3.3.1 Definitions

The tangent cone of X ⊂ Rd at x, denoted by Tan(X,x), is defined by Federer as the cone of
Rd generated by 0 and limits of the form limn→∞

xn−x
||xn−x|| where (xn)n∈N runs among sequences

belonging in X , converging to x and never taking the value x.

Tan(X,x) := Cone
{︃

lim
n→∞

xn − x

||xn − x||

}︃
. (3.16)
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For any such sequence, we say that the vector u = limn→∞
xn−x

||xn−x|| is represented by the sequence
(xn)n∈N. This is equivalent to the following first order expansion of xn:

xn = x+ ||xn − x|| (u+ o(1)).

When X ⊂ Rd has positive reach, the normal cone of X at x, denoted by Nor(X,x), is the
cone dual to the tangent cone:

Nor(X,x) := Tan(X,x)o.

In this case, Tan(X,x) is convex and we have Tan(X,x) = Nor(X,x)o. The normal cone
is related to the projection onto the closest point ξX by the following characterization, for any
0 < t < reach(X):

Nor(X,x) ∩ Sd−1 =
{︂
u ∈ Sd−1

⃓⃓⃓
ξX(x+ tu) = x

}︂
.

Figure 3.12 – Tangent and normal cones of
X at x when reach(X) > 0.

Figure 3.13 – Some unit normal cones (in
red) when 0 < r < reach(X).

When ¬X has positive reach, we let Nor(X,x) := − Nor(¬X,x) be the normal cone of X at
x. When both X and ¬X have positive reach, these definitions coincide.

Proposition 3.26 (Normal cones whenX , ¬X both have positive reach). LetX ⊂ Rd be such that
both reach(X) and reach(¬X) are positive. Then Tan(X,x) and Tan(¬X,x) are respectively
the lower and upper half-spaces associated to the same non-zero linear form. In particular, their
associated normal cones have dimension 1 and are opposite.

Proof.

Lemma 3.30, which is proved independently, shows that Tan(X,x) and Tan(¬X,x) are com-
plementary convex cones. Since none of them is the whole space, the complement set of a
convex cone is itself a tangent cone if and only if both are opposite half-spaces.

□

Definition 3.27 (Normal bundle of a subset of Rd). Let X ⊂ Rd. When reach(¬X) > 0 and
∂X = ∂(¬X), or reach(X) > 0, we define Nor(X) as follows:

Nor(X) :=
{︂

(x, n)
⃓⃓
x ∈ ∂X, n ∈ Nor(X,x) ∩ Sd−1

}︂
. (3.17)
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We say that any setX is fully dimensional when Tan(X,x) has dimension d for every x ∈ ∂X .
This is equivalent to having the set equality int(Tan(X,x)) = Tan(X,x) for all x ∈ ∂X . In
particular, a Lipschitz domain is fully dimensional.

Remark 3.28 – Clarke [Cla75, Chapter 2] gave the name "tangent cones" to another closely related
construction, which is necessarily convex and included into the tangent cone from Federer —
which Clarke calls contingent cone. When X has positive reach, these two notions coincide. We
prefer working with the definition of Federer as it behaves well on complement sets, as will be
seen in Lemma 3.29 and Lemma 3.30. Nevertheless, we will see in Theorem 3.31 that Clarke’s
definition of the normal cone as the cone generated by the Clarke gradient of the distance function
coincides with ours among the class of complementary regular sets.

3.3.2 Technical lemmas involving tangent cones

We prove several results on the tangent cones on compact sets of Rd satisfying weak regularity
assumptions, leading to Theorem 3.31 which relates normal cones to the Clarke gradient of the
distance function. These assumptions are verified by all complementary regular sets as defined in
Section 3.4, which is the class for which we will prove the Morse theorems in the next chapter.

Lemma 3.29 (Tangent cone of the boundary). Let X ⊂ Rd. Then for every x ∈ ∂X ,

Tan(∂X, x) = Tan(X,x) ∩ Tan(¬X,x).

Proof.

We have to prove that Tan(X,x) ∩ Tan(¬X,x) is included in Tan(∂X, x).
Let u ∈ Tan(X,x) ∩ Tan(¬X,x) be of norm 1. Take a sequence xn (resp. ¬xn) in X (resp.
¬X) representing u, i.e. such that

xn = x+ ||xn − x|| (u+ o(1) )
¬xn = x+ ||¬xn − x|| (u+ o(1) ).

The segment [xn,¬ xn] has to intersect ∂X , which means that there exists a λn ∈ [0, 1] such that
∂xn = λnxn + (1 − λn)¬xn belongs in ∂X . This yields

∂xn − x = (λn ||xn − x|| + (1 − λn) ||¬xn − x|| ) (u+ o(1)).

Taking the norm of this equality yields

||∂xn − x|| = (λn ||xn − x|| + (1 − λn) ||¬xn − x|| ) + o(||∂xn − x||).

Naturally, we have:
∂xn − x = ||∂xn − x|| (u+ o(1)),

meaning that u is represented by the sequence ∂xn, which lies in ∂X .

□
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Lemma 3.30 (Complement of tangent cones are tangent cones of complements). Let X ⊂ Rd be
a closed set such that ¬X has positive reach. For any x ∈ ∂¬X , we have:

¬ Tan(¬X,x) = Tan(X,x).

Proof.

Since Tan(X,x) ∪ Tan(¬X,x) = Rd, we know that ¬ Tan(¬X,x) ⊂ Tan(X,x). We will
show the opposite inclusion by proving that Tan(X,x) ∩ int(Tan(¬X,x)) ∩ Sd−1 = ∅.

Let u be a unit vector in Tan(X,x) ∩ int(Tan(¬X,x)) and let v ∈ Nor(¬X,x). Then by
definition, we have Nor(¬X,x) = Tan(¬X,x)o, which yields

⟨u, v⟩ ≤ 0. (3.18)

For every λ ∈ (0, reach(¬X)),x+ λv stands at distance λ from ¬X .

int(B(x+ λv, λ)) ∩¬ X = ∅. (3.19)

Since u ∈ int(Tan(¬X,x)), there exists a λ′ ∈ (0, reach(X)) small enough such that:

u+ λ′v ∈ Tan(¬X,x).

Now let (yn)n∈N be a sequence in ¬X representing u+ λ′v. We prove that yn cannot be in ¬X
for large n. Indeed, the first-order expansion of yn writes

yn = x+ an
(︁
u+ λ′v + ωn

)︁
,

with ωn → 0 and an → 0+. By 3.18, this leads to

||yn − x− λv||2 ≤ λ2 − 2λλ′an + o(an).

When n is large enough, this quantity is strictly smaller than λ2, which contradicts 3.19.

□

3.3.3 Relation between Clarke gradients of distance functions and normal cones

We are now in position to link the normal cones of a setX whose complement ¬X has positive
reach and the Clarke gradient of its distance function dX under some technical assumptions.

Theorem 3.31 (Normal cones and the Clarke gradient of the distance function). Let X ⊂ Rd be
such that reach(¬X) > 0 and such that ¬X is fully dimensional. Then the normal cone of X at
any x ∈ ∂X is determined by the Clarke gradient of dX at x:

Nor(X,x) = Cone
(︂
∂*dX(x)

)︂
.

Proof.
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Let reach(¬X) > r > 0. First remark that we have

∂*dX−r (x) = − Conv
{︄

x− z

||x− z||

⃓⃓⃓⃓
⃓ z ∈ X−r with d−r

X (x) = ||z − x||
}︄

= − Conv
{︂
u ∈ Sd−1 | d¬X(x+ ru) = r

}︂
= − Conv

(︂
Nor(¬X,x) ∩ Sd−1

)︂
.

On the other hand, by definition the Clarke gradient of dX−r at x is determined locally by the
gradients around x in every direction:

∂*dX−r (x) = Conv
{︄

lim
i→∞

∇dX−r (xi)
⃓⃓⃓⃓
⃓ (xi) ∈ (Rd)N converging to x

}︄
.

Now compare to the Clarke gradient of dX at x, for which the gradient contributing only come
from directions outside X (cf. [Cla75, Corollary 2.5]):

∂*dX(x) = Conv
(︄

{0} ∪
{︄

lim
i→∞

∇dX(xi)
⃓⃓⃓⃓
⃓ (xi) →

i→∞
x with dX(xi) > 0

}︄)︄
.

Note that in both definition we implicitly require xi to be points where dX is differentiable. On
those points the gradients of dX and dX−r coincide, yielding

Cone
(︂
∂*dX(x)

)︂
⊂ Cone

(︂
∂*dX−r (x)

)︂
= − Nor(¬X,x). (3.20)

The other inclusion − Nor(¬X,x) ⊂ Cone ∂*dX(x) is Lemma 3.33 whose proof will be the
remainder of this section. We will prove the opposite inclusion on their polar cones, that is:

∂*dX(x)o ⊂ − Nor(¬X,x)o = − Tan(¬X,x). (3.21)

□

Lemma 3.32 (Tangent cone stability under addition with ∂*dX(x)). Let X ⊂ Rd, x ∈ ∂X and
u ∈ ∂*dX(x)o. Then for all h ∈ Tan(X,x), u+ h ∈ Tan(X,x).

Proof.

We use Clarke’s [Cla75, Proposition 3.7] characterization of the dual cone to the Clarke gradi-
ent:

∂*dX(x)o =

⎧⎨⎩u
⃓⃓⃓⃓
⃓ lim
xh→x
xh∈X

lim
δ→0+

1
δ
dX(xh + δu) = 0

⎫⎬⎭ . (3.22)

Consider the following modulus of continuity:

ωu(ε, λ) := sup
xh∈X

||x−xh||≤ε

sup
0<δ≤λ

dX(xh + δu)
δ

.
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When u belongs ∂*dX(x)o, by Clarke’s characterization 3.22 we have

lim
ε→0+

λ→0+

ωu(ε, λ) = 0.

Now take a sequence xi → x representing any h ∈ Tan(∂X, x). Put εi = ||x− xi|| and
consider the sequence xi + εiu. Take ξi in ΓX(xi + εiu), i.e a point in X realizing the distance
of xi + εiu to X . By the definition of ωu, we have:

||ξi − xi − εiu|| = dX(xi + εiu) ≤ εiω(εi, εi).

Thus we can write

ξi − x = εi(h+ o(1) + u+O(ω(εi, εi))) = εi(u+ h+ o(1))

which shows that ξi is a sequence in X representing u+ h.

□

Lemma 3.33 (Relationship between normal cones and Clarke gradients). Let X ⊂ Rd such that
reach(¬X) > 0. Then, if Tan(¬X,x) has full dimension, we have:

∂*dX(x)o ⊂ − Tan(¬X,x).

Proof.

Let u ∈ ∂*dX(x)o. By Lemma 3.32 we know that

u+ Tan(X,x) ⊂ Tan(X,x),

which is equivalent to
u+ Rd \ Tan(X,x) ⊃ Rd \ Tan(X,x).

By Lemma 3.30 we have ¬ Tan(X,x) = Tan(¬X,x). Thanks to the full dimensionality condi-
tion, taking the closure of the previous inclusion yields:

u+ Tan(¬X,x) ⊃ Tan(¬X,x),

which implies that u belongs in − Tan(¬X).

□

3.4 Complementary regular sets

In this section, we define complementary regular sets as a class of sets satisfying for every
point on their boundary the assumptions of every lemma of the previous Section 3.3 on geometric
grounds.
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3.4.1 Definition

Definition 3.34 (Complementary regular sets). We say that a compact subset X of Rd is a com-
plementary regular set when it verifies the following three conditions:

(A1) int(X) = X;
(A2) ∃µ ∈ (0, 1] such that reachµ(X) > 0;
(A3) reach(¬X) > 0.

By (A1) the topological boundaries ∂X and ∂(¬X) coincide, and by (A3) the set X has a
normal bundle. From the assumption (A2) on the Clarke gradient of dX on a neighborhood of X ,
we have that ¬X is fully dimensional in a quantitative way.

Lemma 3.35 (Tangent cones of complementary regular sets contain a ball). Let µ ∈ (0, 1] and let
X be complementary regular with reachµ(X) > 0 Let x ∈ ∂X . Then Tan(¬X,x) contains a ball
of radius µ centered around a unit vector.

Proof.

By [CCLT07, Section 3], we know that for each 0 < r < reachµ(X) there exists a point xr
such that dX(xr) = r and ||xr − x|| ≤ r

µ . Let rn be any sequence converging to 0, and consider
a sequence xn such that ||xn − x|| ≤ rn

µ and dX(xn) = rn. Extracting a subsequence, we can
assume that xn−x

||xn−x|| converges to a unit vector u ∈ Tan(¬X,x), i.e., that we have

xn = x+ εn(u+ o(1)) (3.23)

where εn = ||xn − x|| → 0+. For any unit vector v the sequence xn + µεnv lies in ¬X , and
moreover we have

xn + εnµv = x+ εn(u+ µv + o(1)) (3.24)

which implies that u+ µv belongs in Tan(¬X,x).

□

A consequence of the previous lemma is that convex combination of unit vectors in normal
cones are bounded away from zero, a fact that will be useful in characterizing complementary
regular sets.

Corollary 3.36 (Normal cones of ¬X are thin). Let µ ∈ (0, 1] and let X be complementary
regular with reachµ(X) > 0 Then for any x ∈ ∂X , we have ∆(Conv(Nor(¬X,x) ∩ Sd−1)) ≥ µ.

Proof.

By the previous lemma, take a unit vector u such that B(u, µ) ⊂ Tan(¬X,x). This yields
the opposite inclusion on their dual cones Nor(X,x) ⊂ B(u, µ)o. Take any unit vector w ∈
B(u, µ)o. For any v ∈ Sd−1, we have

0 ≥ ⟨w, u+ µv⟩ = ⟨u,w⟩ + µ ⟨w, v⟩ .

Letting v = w, we see that any such w lies in the half space H−µ
u = {u′ ∈ Rd | ⟨u, u′⟩ ≤ −µ}

which is a convex set such that ∆(H−µ
u ) ≥ µ.

□
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3.4.2 Characterizations of complementary regular sets

Now, we prove that a subset X of Rd is complementary regular if and only if it is the offset of
some Y ∈ Rd at a regular value of dY . First, we characterize the assumptions of Definition 3.34
with a fixed µ > 0

Lemma 3.37 (Characterization of complementary regular sets). Let X be a compact subset of Rd
and let µ ∈ (0, 1]. Then the three conditions

(A1) int(X) = X;
(A′

2) reachµ(X) > 0;
(A3) reach(¬X) > 0;

are equivalent to the existence of ε, δ > 0 and of a compact subset Y of Rd such that X = Y ε

with inf{∆(∂*dY (x)) | dY (x) ∈ [ε, ε + δ]} ≥ µ. The quantity reachµ(X) is the supremum of δ
such that the previous inequality holds.

Proof.

On the one hand, assume that the three conditions (Ai) are satisfied by X . Then for any 0 <
r < reach(¬X) we have (X−r)r = X thanks to (A1). Further assuming that r < reachµ(X),
any such X−r will provide a suitable Y with ε = r. Now let δ ∈ (0, reachµ(X)). For any
x ∈ Rd such that dX(x) > 0 we have dX−r = dX + r on a neighborhood of x. Thus, we have:

µ ≤ inf{∆(∂*dX−r (x)) | dX−r (x) ∈ (r, r + δ]}.

We now bound ∆(∂*dX−r (x)) from below for points x such that dX−r (x) = r. Those
points are exactly the set ∂¬X when r < reach(¬X). For such x, we have ∂*dX−r (x) =
− Conv(Nor(¬X,x)∩Sd−1), and Corollary 3.36 yields the desired bound ∆(∂*dX−r (x)) ≥ µ.
On the other hand, assume that there exist ε > 0 and Y ⊂ Rd such that X = Y ε with

inf{∆(∂*dY (x)) | dY (x) ∈ [ε, ε+ δ] ≥ µ.

By Clarke’s Lipschitz local inversion theorem, the set X is a Lipschitz domain of Rd, which
implies that int(X) = X (condition (A1)). Since dX = dY − ε around any point at distance
to Y strictly greater than ε, the Clarke gradients of Y and X coincide at any such point. We
thus have reachµ(X) ≥ δ, implying condition (A′

2), and moreover reachµ(X) is equal to the
supremum of such δ. Finally, by lower semi-continuity of the Clarke gradient and compactness
of Y , there exists a σ > 0 such that

inf{∆(∂*dY (x)) | dY (x) ∈ [ε− σ, ε+ δ]} ≥ µ

2 (3.25)

which yields reach(¬X) ≥ σ µ2 > 0 by Proposition 3.13 combined with the equality (Y ε−σ)σ =
X , and condition (A3) is verified.

□

We are now in position to obtain the following characterization of complementary regular sets.

Theorem 3.38 (Complementary regular sets are offsets of sets with regular value). A set is com-
plementary regular if and only if it is the offset of a compact set at a regular value of its distance
function.
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Proof.

This is a consequence of the previous lemma along with the semi-continuity of the Clarke gra-
dient, since if reachµ(X) > 0 and X = Y ε, there is a σ > 0 such that on d−1

Y [ε − σ, ε + σ],
∆(∂*dY ) is greater than µ

2 and thus positive. From the set equality d−1
Y (ε, ε + σ] = d−1

X (0, σ]
and the fact that in this set ∂*dY and ∂*dX coincide, we have the desired result.

□

Before extending this characterization to regular sublevel sets of semi-concave functions, we
need the following elementary result on the semi-concavity of squared distance functions.

Proposition 3.39 (Semi-concavity of squared distance functions). For any X ⊂ Rd, the map d2
X

is 1-semi-concave on Rd.

Proof.

The map d2
X −||·||2 : z ↦→ infx∈X ||x− z||2 −||z||2 = infx∈X −2 ⟨z, x⟩+ ||x||2 is the infimum

of affine functions, and thus concave.

□

Moreover, regular sublevel sets of semi-convex functions have positive reach. This is a well-
known fact that generalizes to the Riemaniann setting (see [Ban82]), for which we give an ele-
mentary proof in the Euclidean setting.

Lemma 3.40 (Lower bound on the reach of sublevel sets). Let f : Rd → R be a locally Lipschitz
map. Let α ∈ R be such that X = f−1(−∞, α] is non-empty. For any ρ,K > 0, let

t(ρ,K) := sup
{︂
t ∈ R+ such that (∆ ◦ ∂*f)|Xt\X ≥ ρ,

and f +K ||·||2 is convex for any segment of length t in (∂X)t
}︂
.

Then for any ρ,K > 0,

reachµ(X) ≥ min
(︃

ρ

K(1 + µ) , t(ρ,K)
)︃
. (3.26)

In particular,

reach(X) ≥ min
(︃
ρ

2K , t(ρ,K)
)︃
. (3.27)

Proof.

Let ρ,K be such that t := t(ρ,K) is positive. Let x be a point on the medial axis of X within
Xt and let a, b ∈ ΓX(x) be two distinct closest points of x in X . Remark that (a + b)/2 also
belongs to Xt. Since a ̸= b, (a + b)/2 is strictly closer to x than both a and b, which implies
that f

(︂
a+b

2

)︂
> 0. Yet f(a) = f(b) = 0, which by the K-semi-convexity assumption inside

Xt yields f
(︂
a+b

2

)︂
≤ K

⃓⃓⃓⃓⃓⃓
a−b

2

⃓⃓⃓⃓⃓⃓2
. Now by the inverse flow theorem Proposition 2.9, for any

ε > 0 small enough there is a 1-Lipschitz trajectory starting from x making f decrease at a
speed greater than ρ − ε, implying that (a + b)/2 lies at a distance less than 1

ρ−εf
(︂
a+b

2

)︂
from

X . Letting ε tend to 0, we obtain:

dX

(︃
a+ b

2

)︃
≤ 1
ρ
f

(︃
a+ b

2

)︃
≤ K

ρ

⃓⃓⃓⃓⃓⃓⃓⃓
a− b

2

⃓⃓⃓⃓⃓⃓⃓⃓2
. (3.28)
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Denoting by θ ∈ (0, π/2] the half-angle between a, x and b, we have
⃓⃓⃓⃓⃓⃓
a−b

2

⃓⃓⃓⃓⃓⃓
= sin(θ)dX(x)

and
⃓⃓⃓⃓⃓⃓
x− a+b

2

⃓⃓⃓⃓⃓⃓
= cos(θ)dX(x). Since dX(x) ≤

⃓⃓⃓⃓⃓⃓
x− a+b

2

⃓⃓⃓⃓⃓⃓
+ dX(a+b

2 ) we finally obtain

dX(x) ≤ cos(θ)dX(x) + K
ρ sin2(θ)dX(x)2

=⇒ ρ ≤ K(1 + cos(θ))dX(x).

□

Corollary 3.41 (Weakly regular sublevel sets of semi-convex maps have positive reach). Let α ∈
R and f : Rd → R be a locally Lipschitz map such that α is a weakly regular value of f , with
f−1(−∞, α] compact, and such that f is semi-convex in a neighborhood of f−1(α). Then the
sublevel set f−1(−∞, α] has positive reach.

Proof.

By the semi-convex hypothesis, there is a K > 0 such that f +K ||·||2 is convex on a neighbor-
hood of f−1(α). Since α is a weak regular value, there is a ρ > 0 such that the quantity t(ρ,K)
of Lemma 3.40 is positive.

□

Theorem 3.42 (Complementary regular sets are sublevel sets of semi-concave functions at reg-
ular value). A compact subset of Rd is complementary regular if and only if is the sublevel set
f−1(−∞, α] of a semi-concave map f : Rd → R at a regular value α of f .

Proof.

On the one hand, a complementary regular set is the offset of a set Y at a regular value ε of
its distance function. Recall that from Proposition 3.39 that d2

Y is semi-concave, showing that
Y ε = (d2

Y )−1(−∞, ε2] is a sublevel set of a semi-concave function. The value ε2 is regular for
d2
Y as we have for any x ∈ ∂Y ε:

∂*d2
Y (x) =

{︂
2(x− z)

⃓⃓⃓
z ∈ ΓY (x)

}︂
=⇒ ∆(∂*d2

Y (x)) = 2ε∆(∂*dY (x)).

Now assume that X is the sublevel set of a semi-concave function f at regular value α. Since
α is a regular value of f , the sublevel set f−1(−∞, α] is a Lipschitz domain and we have thus
int(X) = X . The complement set ¬X is the compact sublevel set of the semi-convex function
−f at a regular value, and thus has positive reach. Finally, it is a Lipschitz domain with compact
boundary and as such, has a positive µ-reach for some µ > 0.

□
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In this chapter, we study the sublevel sets of smooth functions restricted to complemen-
tary regular sets as defined in Chapter 3. We show that the topology of the sublevel
sets of some of those functions, which we call Morse functions, evolves by the gluing of
cells around the critical points of the restricted function. The dimension of these cells
is determined by the curvature of the sets and the Hessian of the ambient function at
the critical point, exactly as in the classical Morse theory over C2 manifolds. Using
non-smooth analysis, we adapt the main ideas of the article Curvature measures and
generalized Morse theory [Fu89a] to complementary regular sets.
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Figure 4.1 – Handle attachment lemma for a height filtration around a saddle point of a surface in
R3.

4.1 Introduction

Morse theory was born in the first half of the twentieth century to analyze the topology of
a manifold by studying differentiable, real-valued functions on that manifold. The intuition is
that for a generic function f , the homotopy type of the sublevel sets Xt := f−1(−∞, t] should
change only around a finite number of filtration value t, with the topology changes following the
combinatorial rules of CW-Complexes. This is explicited by the two core results of Morse theory:

Theorem 4.1 (Constant homotopy type lemma). Let X be a smooth manifold and let f be a C1

function on X . Then if the segment [a, b] contains no critical value of f , Xa is a deformation
retract of Xb.

Theorem 4.2 (Handle-attachment lemma). LetX be a smooth manifold and let f be aC2 function
on X . Suppose that there is a neighborhood V of c ∈ R such that c is the only critical value of f ,
and that the set critc(f) of critical points of f within f−1(c) is finite. Assume that at each point
of critc(f), the Hessian of f is non-degenerate. Then for any ε > 0 small enough, Xc+ε has the
homotopy type of Xc−ε with a cell glued around each point of critc(f), and the dimension of each
cell is the index of the Hessian f at this critical point.

In this setting, we say that a C2 function is Morse when its Hessian is non-degenerate at its
critical points; in this case, its critical points are isolated within X . This condition is generic,
as the set of Morse functions is open and dense among C2 maps of X with the corresponding
C2-Fréchet metric. Notably, when X is equipped with a Riemannian metric, the subset of points
x ∈ X such that d2

x is Morse is open and dense, and when X is a submanifold of a Euclidean
space, the linear forms hν : u ↦→ ⟨u, ν⟩ restricted to X are Morse for Hd−1-almost every ν in
Sd−1.

Several works aimed at adapting the constant homotopy and handle-attachment lemmas to
other classes of sets or functions. During the eighties, consequent works extended Morse theory
to C2 functions restricted to a stratified subset of a Riemannian manifold, culminating in the
monograph of Goresky and MacPherson [GM88]. In the context of stratified Morse theory, the
change of topology around a non-degenerate critical point is obtained by the gluing of the so-
called "local Morse data", which might not be a cell. With a similar weak version of the handle-
attachment lemma, Morse theory was extended to broader classes of functions such as so-called
"min-type functions" on a manifold [GR97], which are functions which can be locally written as
the minimum of a finite number of C2 functions, and for distance functions to a set in a o-minimal
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structure [GLRS24]. An adaption of the Morse lemmas to the combinatorial settings of functions
on CW-Complexes can be found in the discrete Morse theory of Forman [For95].

Figure 4.2 – Consider the height filtration, whose direction is indicated by the arrow, on a ruff as
in the left figure. The topological event around the central point is not equivalent to the gluing of
a cell as the number of connected components changes by more than one.

In 1989, Joseph Fu [Fu89a] extended Morse theory to smooth maps restricted to sets with
positive reach. He proved that the topological changes happening around a critical point are as
in the original handle-attachment lemma. Given X ⊂ Rd of positive reach and a generic smooth
function f : Rd → R, he considered some functions fr, which consists in f precomposed by a
pertaining translation, such that fr|Xr is Morse when r → 0 is small enough. He showed that
the topological events of their associated sublevel set filtration (Xr ∩ f−1

r (−∞, t]) converged to
those of (Xt)t∈R and used this limit to define the critical points of f|X , their Hessians and thereby
Morse functions on X . Finally, he obtained Morse theorems for compact sets with positive reach.

Theorem 4.3 (Generalized Morse theory for sets with positive reach). Let X be a compact subset
of Rd with positive reach and let f : Rd → R be a smooth function such that f|X is Morse with at
most one critical point per level set.

Then for any regular value c ∈ R, Xc has the homotopy type of a CW -complex with one λp
cell for each critical point p such that f(p) < c, where

λp = Index of Hf|X at p.

4.2 Morse vocabulary and outline of the chapter

The method of Fu uses the existence in a neighborhood of X of a continuous map ξX project-
ing onto its closest points, which does not exist for complementary regular sets. To circumvent this
problem, we use the tools of Lipschitz analysis developed in Chapter 2 and Chapter 3. We recall
below the definitions of critical points of smooth function restricted to a set with positive reach,
as well as Hessians and non-degenerate critical points of restricted functions found in [Fu89a].
We will use these definitions as they naturally extend to any complementary regular set via their
normal bundle.

Definition 4.4 (Critical points and Hessian). Let f : Rd → R be smooth andX be a set of positive
reach or a complementary regular set of Rd.
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— Let (x, n) ∈ Nor(X) be a regular pair . The second fundamental form IIx,n of X at
(x, n) is defined as the bilinear form on π0(Tan(Nor(X), (x, n))) such that for every pair
(u, v), (u′, v′) in Tan(Nor(X), (x, n)),

IIx,n(u, u′) :=
⟨︁
u, v′⟩︁ . (4.1)

Taking (bi) an orthonormal basis of π0(Tan(Nor(X), (x, n))) consisting of all principal
directions with finite associated principal curvatures, this definition is equivalent to:

IIx,n(bi, bj) := κiδi,j (4.2)

and generalizes the classical fundamental form obtained when X has a smooth boundary;
— We say that x ∈ X is a critical point of f|X when ∇f(x) ∈ − Nor(X,x);
— We say that c ∈ R is a critical value of f|X when f−1(c) contains at least a critical point

of f|X . Otherwise, c is a regular value of f|X ;

— If x is a critical point of f|X with ∇f(x) ̸= 0, let n := −∇f(x)
||∇f(x)|| . When (x, n) is a

regular pair, the Hessian of f restricted to X at x denoted by Hxf|X is defined over
π0(Tan(NX , (x, n))) by:

Hxf|X(u, u′) := Hxf(u, u′) + ||∇f(x)|| IIx,n(u, u′);

— The index of this Hessian is the dimension of the largest subspace on which Hf|X is
negative definite;

— We say that a critical point x of f|X is non-degenerate when ∇f(x) ̸= 0, (x, n) is a regular
pair of Nor(X), and the Hessian Hxf|X is not degenerate;

— f|X is said to be Morse when its critical points are non-degenerate.

Adapting the techniques of [Fu89a] to understand whole topological events of the sublevel
filtrations of a Morse function can be summarized as follows. Let f : Rd → R be such that f|X is
Morse, and a, b be two critical values of f|X such that (a, b) contains only regular values. When
ε > 0 is small enough, we will obtain the following diagram:

Xb+ε X−r
b+ε

Xb−ε X−r
b−ε

Xa+ε

(1)

(1)

(3)

(2)

— In Section 4.3, we prove that the maps (1) are homotopy equivalences when r > 0 is small
enough;

— Using computations from the previous section, we prove in Section 4.4 that Xb−ε defor-
mation retracts onto Xa+ε, thereby proving that arrow (2) is an homotopy equivalence;

— In Section 4.5 we work on arrow (3). We prove that for r, ε > 0 small enough, the
topology of X−r

b+ε is obtained from that of X−r
b−ε by gluing cells whose dimension is the

index of Hessian of f at critical points with value b, around which they are glued. We also
prove that non-degenerate critical points are isolated.
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4.3 Smooth surrogates for Xc

For the remainder of this chapter, we let X ⊂ Rd be a complementary regular set and f :
Rd → R be a smooth function. Following Fu’s technique, we want to apply classical Morse
theory to the eroded sets X−r = {x ∈ Rd | d¬X(x) ≥ r}, in a way that the topological events
of the filtration (X−r

t )t∈R converge when r → 0 to that of (Xt)t∈R. To that end, we will consider
the restriction to X−r of the sublevel sets filtration of f slightly translated by a smooth function
η : Rd → R with ||η||∞ ≤ 1.

Definition 4.5 (Smooth surrogates for sublevel sets of X). Let c be a regular value of f|X and let
fr be f precomposed by the translation by rη:

fr : x ↦→ f(x+ rη(x)).

We define the smooth surrogates for Xc set as:

X−r
c := X−r ∩ f−1

r (−∞, c]

and non-negative, locally Lipschitz functions

ϕc := dX + max(f − c, 0) ϕcr := dX−r + max(fr − c, 0).

verifying Xc = (ϕc)−1(0) and X−r
c = (ϕcr)−1(0). When the value of c is clear from the context,

we write ϕr instead of ϕcr to ease notations.

By definition, when r > 0 is small enough, the set X−r is a C1,1 domain. We will show in
this section that X−r

c and Xc have the same homotopy type when r > 0 is small enough and c is a
regular value, explaining the name smooth surrogate for X−r

c . This reasoning begins by showing
that the following convergence of sublevel sets holds.

Lemma 4.6 (Hausdorff convergence of sublevel sets). Let X be a complementary regular set, let
f : Rd → R be smooth and let c be a regular value of f|X . Then in the Hausdorff topology we
have:

lim
r→0

X−r
c = Xc. (4.3)

Proof.
Since ||η|| ≤ 1, we have X−r

c ⊂ (Xc)r for any r > 0. Assume that there is no Hausdorff
convergence. Then there is a point x ∈ X and a real t > 0 such that B(x, t) and X−r

c have
empty intersection for any r > 0 small enough. Let u be in Tan(X,x) and consider a sequence
xn ∈ int(X) (possible since intX = X representing u, i.e., such that xn = x + εn(u + o(1))
with the sequence εn in R+ \ 0 converging to 0. For n big enough, xn lies in B(x, t) and xn
belongs to X−r for any 0 < r < d¬X(xn). However, by assumption it does not belong in X−r

c

and we have
fr(xn) > c.

Letting r go to zero yield c ≤ f(xn). Since f(x) ≤ c, the first order expansion of f at x yields
⟨∇f(x), u⟩ ≥ 0. This holds for any u in Tan(X,x), which amounts to the following inclusion
in a half-space:

Tan(X,x) ⊂ −∇f(x)o. (4.4)

Now Tan(X,x) is the complement set of the convex cone Tan(¬X,x). The previous inclu-
sion thus yields Tan(¬X,x) = ∇f(x)o, which is equivalent to the equality Cone(∇f(x)) =
Nor(¬X,x), contradicting the fact that c is a regular value of f .
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□

When c is a regular value, the following lemma gives a uniform lower bound on ∆◦∂*ϕr over
neighborhoods of X−r

c of fixed size when r tends to 0.

Lemma 4.7 (Non-vanishing ∂*ϕr around a regular value). Let c be a regular value of f|X . Then
there exists a positive constant α such that for any sequences of positive reals (ri), (Ki) such that
ri,Ki → 0+, and any sequence (xi) of points within ϕ−1

ri
(0,Ki] for all i ∈ N, we have:

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ α.

Proof.

The map ϕri = dX−ri + max(0, fri −x) is the sum of a Lipschitz function and the positive part
of a smooth function. We distinguish seven cases to compute the Clarke gradient ∂*ϕri(xi),
each with different contributions from dX−ri and max(0, fri − c). By extracting subsequences,
we can assume that the sequence (xi) lies in one of these cases. They are depicted in Figure 4.3.
In fact, we will show that for any such sequence, we have:

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ min(µ, σ, κ) > 0 (4.5)

where
— κ := inff−1(c)∩X ||∇f || is a positive quantity because c is a regular value of f|X .
— µ ≤ inft→0{∆(∂*dX(x)) | 0 < dX(x) < t} is positive by hypothesis.
— σ := infx∈∂X∩f−1(c) ∆(Ax) where x ↦→ Ax is the upper semi-continuous set-valued map

defined by:

Ax :=
(︂
[0, 1] · ∂*dX(x) + {∇f(x)}

)︂
∪
(︂
∂*dX(x) + [0, 1] · {∇f(x)}

)︂
.

For any point x ∈ ∂X , keep in mind that from Theorem 3.31 we have the identity

Cone ∂*dX(x) = Nor(X,x),

which means that any direction in ∂*dX(x) is a direction in Nor(X,x). The constant σ is
positive when c is a regular value of f|X . The set ∂X ∩ f−1(c) is compact, and the map
x ↦→ ∆(Ax) is lower semi-continuous. Assume that σ is zero. Then there is a point x ∈
∂X ∩ f−1(c) with ∆(Ax) = 0. This means that the direction of ∇f(x) meets Nor(X,x),
and thus c is a critical value of f|X .

Idea behind the proof. For each of the seven cases, we will show that lim inf i→∞ ∆(∂*ϕri(xi))
is greater than one among σ, κ, µ, depending on the contributions of dX−ri and fri . Computa-
tions will show that ∂*ϕri(xi) either lies close to ∇f(xi), ∂*dX(xi) or close to be inside Axi ,
each being bounded away from zero respectively by the non-vanishing of κ, µ and σ.
To ease some notations, we write ν(x) := x

||x|| and ||∇fri − ∇f ||∞,X1 =: εi the infinity norm
of ∇fri − ∇f over the 1-offset of X ∗ Remark that by elementary computations we have εi =
O(ri).

∗. We could have taken the infinity norm over any bounded neighborhood of X without altering the line of reason-
ing.
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Figure 4.3 – Illustration of the 7 cases of Lemma 4.7.

Case 1. dX−ri (xi) > ri and fri(xi) < c.

Then ∂*ϕri(xi) = ∂*dX(xi) with 0 < dX(xi) < Ki + dH(X−ri , X) which tends to 0 as
i → ∞. By the µ-reach hypothesis, we have

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ µ > 0. (4.6)

Case 2. xi ∈ int(X−ri).

Then ∂*ϕri(xi) = {∇fri(xi)} and 0 < fri(xi) − c ≤ Ki. As such, we have the inclusion
∂*ϕri(xi) ⊂ {∇f(xi)}εi and we obtain

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ κ > 0. (4.7)
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Case 3. dX−ri (xi) > ri and fri(xi) > c.

Then ∂*ϕri(xi) = ∂*dX(xi) + ∇fri(xi) ⊂ (Axi)εi , which yields

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ σ > 0. (4.8)

Case 4. dX−ri (xi) > ri and fri(xi) = c.

First remark that since dX−ri (xi) > ri we have ∂*dX−ri (xi) = ∂*dX(xi), dX(xi) → 0
since lim

r→0
X−r = X , and dX(xi) > 0. Now without loss of generality by extracting we can

assume xi converges to a point x in ∂X ∩ f−1(c).
Now ∇fri(xi) has to be non-zero for i big enough as εi = O(ri) and

lim inf
i→∞

||∇f(xi)|| ≥ inf
x∈X∩f−1(c)

||∇f(x)|| = κ

which yields that the set {y | fri(y) ̸= c} has density 1 at xi by the local inverse function
theorem. As the Clarke gradient can be computed in a set of density 1 at xi (see [Cla75]),
we have for any xi where ∇fri(xi) ̸= 0:

∂*ϕri(xi) = Conv
{︂

lim
n→∞

∇ϕri(zn) | zn → xi, fri(zn) ̸= c
}︂
.

We can decompose this set as

∂*ϕri(xi) = Conv(A+ ∪A−)

where
A+ :=

{︂
limn→∞ ∇ϕri(zn)

⃓⃓⃓
zn → xi, fri(zn) > c

}︂
A− :=

{︂
limn→∞ ∇ϕri(zn)

⃓⃓⃓
zn → xi, fri(zn) < c

}︂
.

Now only dX−ri contributes to the gradients ofA− whereas fri also contributes inA+. Thus
any point in Conv(A+ ∪ A−) can be written as u + λ∇fri(x) where u ∈ ∂*dX−ri (xi) =
∂*dX(xi) and λ ∈ [0, 1]. This finally yields:

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ ∆(Ax) ≥ σ > 0. (4.9)

Case 5. xi ∈ ∂X−ri and fri(xi) > c.

If ri > 0, then ∂*dX−ri (xi) is the convex set generated by 0 and the direction normal to
X−ri at xi, that is [0, 1] · ν(ξ¬X(xi) − xi). Note that this direction belongs in the normal
cone Nor(X, ξ¬X(xi)) as illustrated in Figure 4.4. Adding the contribution of fri we obtain

∂*ϕri(xi) ⊂ (Aξ¬X(xi))
εi .

If ri = 0, then ∂*ϕri(xi) = [0, 1] · ∂*dX(xi) + ∇fri(xi) and we obtain

∂*ϕri(xi) ⊂ (Axi)εi .

Either way,
lim inf
i→∞

∆(∂*ϕri(xi)) ≥ ∆(Ax) ≥ σ > 0. (4.10)
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Now the remaining cases fit inside sequences of points (x, r) such that 0 < dX−r (x) ≤ r.
Remark that reach(X−r) ≥ r. If dX−r (x) < r we know that x has only one closest point
ξX−r (x) in X , which yields ∂*dX−r (x) = {ν(x− ξX(x) )} . If dX−r (x) = r, x belongs to ∂X
and the Clarke gradient ∂*dX−r (x) is Conv(Nor(X,x)∩Sd−1) which is Conv(Cone ∂*dX(x)∩
Sd−1) by Theorem 3.31. These considerations are illustrated in Figure 4.4 with 0 < dX−r (x1) <
r and dX−r (x2) = r. In any case, this leads to

∂*dX−r (x) ⊂ Conv(∂*dX(ξ¬X(x)) ∪ Sd−1) (4.11)

Figure 4.4 – Visualisation of the inclusion ∂*dX−r (x) ⊂ ∂*dX(ξ¬X(x)) for two points x1 and x2,
with 0 < r < reach(¬X,x). The translated unit cone x2 + Nor(¬X,x2) ∩ B(x2, r) is depicted
in red.

Case 6. 0 < d−ri
X (xi) ≤ ri and fri(xi) ≥ c

∂*ϕri(xi) ⊂ Conv
(︂
Nor(X, ξ¬X(x)) ∩ Sd−1

)︂
+ [0, 1] · ∇fri(xi). Now by compactness

assume that xi → x. Then x ∈ ∂X ∩ f−1(c) and thus

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ ∆(Ax) ≥ σ > 0. (4.12)

Case 7. 0 < d−r
X (xi) ≤ ri and fri(xi) < c

Then ∂*ϕri(xi) ⊂ Conv
(︂
∂*dX(ξ¬X(xi)) ∩ Sd−1

)︂
which yields

lim inf
i→∞

∆(∂*ϕri(xi)) ≥ µ > 0. (4.13)

□

We are now able to build homotopies in neighborhoods of fixed size of bothXc andX−r
c when

r is small enough.

Lemma 4.8 (Deformation retractions aroundXc andX−r
c ). Let c be a regular value of f|X . Using

the notations of Definition 4.5, there exists K > 0,M ≥ 1 as well as continuous, piecewise-
smooth flows

C : [0, 1] × ϕ−1(−∞,K] → ϕ−1(−∞,K]
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Cr : [0, 1] × ϕ−1
r (−∞,K] → ϕ−1

r (−∞,K]
such that:

— L := sup{∆(∂*ϕ(y))−1 | y ∈ ϕ−1(0,K]} is finite;
— For all r > 0 small enough, (Xc)

K
M ⊂ ϕ−1

r (−∞,K] and (X−r
c )

K
M ⊂ ϕ−1(−∞,K];

— C(0, ·), Cr(0, ·) are the identity over their respective spaces of definition;
— C(1, ϕ−1(−∞,K]) = Xc and Cr(1, ϕ−1

r (−∞,K]) = X−r
c ;

— For any t ∈ [0, 1], C(t, ·)|Xc
, Cr(t, ·)|X−r

c
are the identity over Xc and X−r

c ;
— C(·, ·) and Cr(·, ·) are 2KL-Lipschitz in the first variable when r > 0 is small enough.

Proof.

Remark that Xc = ϕ−1(0) and X−r
c = (ϕr)−1(0). We want to bound ∆ ◦ ∂*ϕr and ∆ ◦ ∂*ϕ)

from below to apply Proposition 2.9.
Let

ω(s,K) := inf
r∈[0,s]

x∈ϕ−1
r (0,K]

∆(∂*ϕr(x)).

Lemma 4.7 states that
lim inf
s→0+

K→0+

ω(s,K) > 0. (4.14)

When K, s > 0 are small enough, for all r ∈ [0, s], ∆ ∂*ϕr is uniformly bounded below by a
positive number in ϕ−1

r (0,K], allowing the offsets to be retracted by the approximate inverse
flows C,Cr of respectively ϕ and ϕr by Proposition 2.9. For any positive ε, the flows can be
chosen so that the gradients of the flows in the time parameter are bounded by (1 + 1

2ε)lr,K =
(1 + ε

2)K sup{∆(∂*ϕs(y))−1 | s ∈ [0, r], y ∈ ϕ−1
r (0,K]} which is finite when r,K are taken

small enough, and the supremum tends to a positive number L when r,K go to zero. When
these numbers are small enough, the whole quantity is bounded by (1 + ε)KL.
Since the functions (ϕr)r∈[0,s] are uniformly Lipschitz, we let M := 1 + sup{Lip(ϕr)r∈[0,s]}.
As the sets X−t

c converge to Xc when t goes to 0 by Lemma 4.6, and ||ϕ− ϕr||∞ = O(r), we
have

(X−t
c )

K
M ⊂ ϕ−1

r (0,K]
for any t, r small enough.

□

Corollary 4.9 (Homotopy Equivalence). Let X ⊂ Rd be a complementary regular set and
f : Rd → R be a smooth function. Let c be a regular value of f|X , let η be a smooth func-
tion with ||η||∞ ≤ 1 and let fr : x ↦→ f(x + rη(x)). Then for all r > 0 small enough,
X−r
c = X−r ∩ f−1

r (−∞, c] and Xc have the same homotopy type.

Proof.

Since lim
r→0

dH(X−r
c , Xc) = 0 < K/M , the flows C, Cr are respectively well-defined on X−r

c ,

Xc for r small enough thanks to Lemma 4.8. Letting ψ := C(1, ·)|X−r
c

: X−r
c → Xc and

ψr := Cr(1, ·)|Xc
: Xc → X−r

c , their composition ψ ◦ ψr is homotopic to IdXc via the map{︄
Xc × [0, 1] → Xc

(x, t) ↦→ C(1, C(t, Cr(t, x))).
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In the same fashion, ψr ◦ ψ is homotopic to IdX−r
c

via (t, x) ↦→ Cr(1, Cr(t, C(t, x))).
□

4.4 Constant homotopy type lemma

In this section, we prove that the topology of the sublevel sets of a smooth map restricted to a
complementary regular set does not evolve between critical values.

Theorem 4.10 (Constant homotopy type between critical values). Let X ⊂ Rd be a complemen-
tary regular set. Let f : Rd → R be a smooth map and a < b ∈ R be such that [a, b] contains only
regular values of f|X . Then Xa is a deformation retract of Xb.

This theorem is a direct consequence of the compactness of [a, b] and Lemma 4.12, which we
will prove using the following technical lemma.

Lemma 4.11 (Regular values of the family (ϕc)c∈R are open.). Let c be a regular value of f|X
and let ϕs := dX + max(f − s, 0) for any s ∈ R. Then we have:

lim
ε→0+

K→0+

inf
{︂

∆(∂*ϕc+a(x)) | x ∈ (ϕc+a)−1(0,K], a ∈ [−ε, ε]
}︂
> 0.

Proof.
We proceed by contradiction. Assuming the inequality is false, there exist two real sequences
ai → 0,Ki → 0+, and (xi)i∈N a sequence in Rd such that:

∀i ∈ N, 0 < ϕc+ai(xi) ≤ Ki and lim
i→∞

∆(∂*ϕc+ai(xi)) = 0.

We use the same distinction of sequences of ϕ−1
c+ai

(0,Ki] into cases as in the proof of
Lemma 4.7. Since r = 0, we distinguish 5 cases to compute ∂*ϕc+ai .
Case 1. f(xi) < c+ ai and dX(xi) > 0.

Then ∂*ϕc+ai(xi) = ∂*dX(xi) and since dX(xi) ≤ Ki → 0, we have:

lim inf
i→∞

∆(∂*ϕc+ai(xi)) ≥ µ > 0.

Case 2. xi ∈ int(X) and f(xi) > c+ ai.
Then ∂*ϕc+ai(xi) = {∇f(xi)} and thus

lim inf
i→∞

∆(∂*ϕc+ai(xi)) ≥ σ > 0.

Cases 3, 4, 5. ⎧⎪⎨⎪⎩
f(xi) > c+ ai and dX(xi) > 0
f(xi) > c+ ai and xi ∈ ∂X
f(xi) = c+ ai and dX(xi) > 0.

In these 3 cases we have the inclusion ∂*ϕc+ai(xi) ⊂ Axi . As in the proof of Lemma 4.7,
the map y ↦→ Ay is semi-continuous. Now if (xi) converges to a point x then this point
belongs to ∂X ∩ f−1(c) . Since c is a regular value, we have:

lim inf
i→∞

∆(∂*ϕc+ai(xi)) ≥ κ > 0.



4.5 – Handle attachment around critical values 59

□

Lemma 4.12 (Local deformation retractions). Let X be complementary regular, f : Rd → R
smooth and let c be a regular value of f|X . Then for all ε > 0 small enough and any
−ε ≤ a ≤ b ≤ ε, Xc+a is a deformation retract of Xc+b.

Proof.

By Lemma 4.11 there exist σ, ε,K > 0 such that for every a ∈ [−ε, ε] we have

∆(∂*ϕc+a(x)) ≥ σ for all x in (ϕc+a)−1(0,K]. (4.15)

Thus by Proposition 2.9 for every α ∈ [−ε, ε] there exists a continuous 2K
σ -Lipschitz approxi-

mate flow of ϕc+α on (ϕc+α)−1(0,K] which we will denote Cc+α(·, ·). By elementary compu-
tations one has for every a < b ∈ [−ε, ε] :

ϕc+a(Xc+b) ⊂ [0, b− a] ⊂ [0, 2ε] (4.16)

meaning that Xc+b ⊂ (ϕc+a)−1(0,K] when ε > 0 is small enough. The flow Cc+a makes ϕc+a

decrease, leading to the following inclusions for ε > 0 small enough and any t ∈ [0, 1]:

Cc+a(t,Xc+b) ⊂ (ϕc+a)−1[0, 2ε] ⊂ (ϕc+b)−1[0,K]. (4.17)

Consequently, the composition Cc+b(s, Cc+a(t, x)) is well-defined for any t, s ∈ [0, 1] and
x ∈ Xc+b and is continuous in every of these variables. Now letting i be the inclusion Xc+a →
Xc+b and ψ := Cc+a(1, ·) : Xc+b → Xc+a, one clearly has ψ ◦ i = IdXc+a . The map i ◦ ψ is
homotopic to IdXc+b

via the homotopy{︄
Xc+b × [0, 1] → Xc+b

(x, t) ↦→ Cc+b(1, Cc+a(t, x)). (4.18)

□

4.5 Handle attachment around critical values

We now want to study the evolution of the topology of the sublevel set filtration of a Morse
function and prove the handle attachment lemma. We begin by showing that non-degenerate criti-
cal points are isolated.

Proposition 4.13 (Critical points of a Morse function are isolated). Let X ⊂ Rd be a set with
positive reach or a complementary regular set and let f : Rd → R be a smooth function. Then in
the set of critical points of f|X , the non-degenerate critical points are isolated.

Proof.

Let x be a non-degenerate critical point and assume that there is a sequence xi in ∂X of critical
points of f|X all distinct from x and converging to x. This means that for every i ∈ N, the unit

vector ni := − ∇f(xi)
||∇f(xi)|| lies in Nor(X,xi). The sequence (xi, ni) lies in Nor(X) and converges

to (x, n) where n := − ∇f(x)
||∇f(x)|| . Extracting a subsequence, we can assume that (xi−x,ni−n)

||(xi−x,ni−n)||
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converges to (u, v) ∈ Tan(Nor(X), (x, n)). Since x is non-degenerate, Tan(Nor(X), (x, n) is
a vector space and both u and −u belong in π0(Tan(Nor(X), (x, n)) ⊂ Tan(X,x), yielding
⟨u, n⟩ = 0. Moreover, the second fundamental form of X at (x, n) in the direction u is given
by:

IIx,n(u, u) = ⟨u, v⟩. (4.19)

Since ν := − ∇f
||∇f || is smooth around x, we have ||ni − n|| = ||ν(xi) − ν(x)|| = O(||xi − x||).

This entails ||(xi − x, ni − n)|| = O(||xi − x||) which ensures that the spacial component u
of the limit is non-zero. We can further assume that xi−x

||xi−x|| converges to u
||u|| . The first order

expansion of ni = ν(xi) gives

ni − n = ||xi − x||Dxν

(︃
u

||u||

)︃
+ o(||xi − x||). (4.20)

If Dxν(u) = 0, we have ||ni − n|| = o(||xi − x||) meaning that v = 0 = Dxν(u) and
IIx(u, u) = 0. Otherwise, ||ni − n|| ∼ C ||xi − x|| for some C > 0. By elementary com-
putations this also yields Dxν(u) = v and we thus have in any case

Dxν(u) = v. (4.21)

Now we can write the first order expansion of ∇f(xi) + ||∇f(xi)||ni:

0 =∇f(xi) + ||∇f(xi)||ni
= ||xi − x|| (Hxf(u) + ||∇f(x)||Dxν(u) − n ⟨n,Hxf(u)⟩) + o(||xi − x||).

Taking the scalar product of this vector with u yields:

Hxf|X(u, u) = Hxf(u, u) + ||∇f(x)|| ⟨u, v⟩ = 0. (4.22)

This contradicts the non-degeneracy of Hxf|X in the direction u which belongs to
π0(Tan(Nor(X)), (x, n)) \ {0}.

□

When c is critical value of f|X with only one corresponding critical point x, we choose the
map η : Rd → R as follows.

Definition 4.14 (Choice of surrogates when there is at most one critical point per sublevel set).
Let X ⊂ Rd be a complementary regular set and let f : Rd → R be smooth. If c ∈ R is such that
f−1(c) contains only one critical point x of f|X which is non-degenerate, we put for any r > 0:

γcr := y ↦→ y − r
∇f(x)

||∇f(x)|| fr,c := f ◦ γcr

When the value c is clear from the context, we write γr and fr instead to ease notations.

The following two lemmas focus on the properties of the critical points of fr|X−r .

Lemma 4.15 (Local correspondence between critical points of f|X and fr|X−r ). Let X be a com-
plementary regular subset of Rd. Assume x is a non-degenerate critical point of f|X and let indx
be the index of the Hessian of f|X at x. Then xr = γr(x) is a critical point of fr|X−r such that
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fr(xr) = f(x) for all 0 < r < reach(¬X). When r is small enough, xr is a non-degenerate
critical point of fr|X−r , whose Hessian at point xr has index

indrx := indx + number of infinite curvatures at
(︃
x,

∇f(x)
||∇f(x)||

)︃
.

Proof.

Let n = ∇f(x)
||∇f(x)|| ∈ Nor(¬X,x) the normalized gradient of f at this point. Keep in mind that

fr : x ↦→ f(x− rn) is f translated in the direction n with magnitude r.
The pair (x, n) ∈ Nor(¬X) is regular by non-degeneracy of f at x. Denote by (κ′

i)1≤i≤d−1 the
principal curvatures (defined in Definition 6.4) of ¬X at (x, n) sorted in ascending order and
put m := max{i |κ′

i < ∞}. From there we follow the reasoning of Fu [Fu89a]. When 0 < r <
reach(¬X), X−r is as C1,1-domain and the regularity of the pair (x, n) in X guarantees that
the Gauss map x ∈ ∂¬X−r ↦→ n(x) ∈ Sd−1 is differentiable at x+ rn. We have the following
linear correspondence between tangent spaces:

Tan(Nor(¬(X−r)), (x+ rn, n)) = {(τ + rσ, σ) | (τ, σ) ∈ Tan(Nor(¬X), (x, n))}.

Since Nor(X−r) = {(z,−n) | (z, n) ∈ Nor(¬(X−r)} we have:

π0(Tan(Nor(X−r), (x+ rn, n))) = {τ − rσ | (τ, σ) ∈ Tan(Nor(X), (x, n))}.

This vector space is identifiable with the classical tangent space of differential geometry since
and thus has dimension d. Proceeding exactly in the same fashion as the proof of [Fu89a, 4.6],
we can write, for any τ − rσ, τ ′ − rσ′ in π0(Tan(Nor(X−r), (x+ rn, n))):

Hx+rnfr|X−r (τ − rσ, τ ′ − rσ′)
=Hx+rnfr(τ − rσ, τ ′ − rσ′) + ||∇fr(xr)|| IIx+rn(τ − rσ, τ − rσ′)
=Hxf(τ − rσ, τ ′ − rσ′) + ||∇f(x)||

⟨︁
τ − rσ, σ′⟩︁ .

We can decompose π0(Tan(Nor(X−r), (x + rn, n))) as the direct sum of F := {σ | (0, σ) ∈
Tan(Nor(X), (x, n))} and a supplementary subspace E. E has dimension m and F dimension
d−m. By the structure theorem of tangent spaces, E and F are orthogonal. From the previous
computation, identifying coefficients in front of the r-monomials, there are square matrices
A1, A2, A3 of size m, a square matrix B of size d−m and a rectangular matrix C such that the
Hessian Hx+rnfr|X−r has the form(︄

A1 + rA2 + r2A3 rC
rCt −r ||∇f(p)|| Id+ r2B

)︄

where A1 is similar to the matrix of Hxf|X . It is the same computation as [Fu89a] except that
we end up with a minus sign in front of the identity in the lower right corner. When r > 0 is
small enough, this matrix is non-degenerate and its index is that of A1 plus the dimension of the
identity matrix in the lower right corner.

□
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Lemma 4.16 (Critical points of fr|X−r when r is small enough). LetX ⊂ Rd be a complementary

regular set. Let f : Rd → R be a smooth function such that f|X is Morse. Assume x is the only

critical point in X ∩ f−1(c). Then for ε, r > 0 small enough, xr = x + r ∇f(x)
||∇f(x)|| is the only

critical point of fr|X−r inside f−1
r|X−r (c− ε, c+ ε), and fr(xr) = c.

Proof.

First remark that fr(xr) = f(x) and ∇fr(xr) = ∇f(x). For r > 0 small enough, the nor-
mal consists in a sole line, in the same fashion as x1 in Figure 4.4. More precisely, we have
Nor(X−r, xr) = − Cone(∇f(x)) and xr is a critical point of fr|X−r . Assuming the claim of
Lemma 4.16 is false, there are sequences εi, ri > 0 converging to 0, and yi a sequence in ∂X
such that:

d¬X(yi) = ri— yi ̸= xri—

c− εi ≤ fri(yi) ≤ c+ εi— ni := − ∇fri (yi)
||∇fri (yi)|| ∈ Nor(X, yi).—

By semi-continuity of the normal cones as functions of ∂X , which is a consequence of the
identity Nor(X,x) = Cone(∂*dX(x)), any accumulation point x̄ of the sequence (yi)i∈N is a
critical point of f|X with f(x̄) = c, thus showing that yi converges to x. Now put xi := ξ¬X(yi).
If we assume that xi = x for all i, then yi = x + rini. Since yi ̸= xri , ni and n are not equal,
and we can also assume that ni−n

||ni−n|| converges to some unit vector v′ ∈ Rd by extracting a
subsequence. Then we would have

ni − n = − ∇f(x+ ri(ni − n))
||∇f(x+ ri(ni − n))|| + ∇f(x)

||∇f(x)||
= − ri ||ni − n|| (Dxν)(v) + o(ri ||ni − n||)
= o(||ni − n||)

which is absurd. We can thus assume without loss of generality that xi is different from x for
all i ∈ N. Reasoning exactly as in the proof of Proposition 4.13, we can extract a subsequence
such that the sequence (xi−x,ni−n)

||(xi−x,ni−n)|| converges to (u, v) ∈ Tan(Nor(X), (x, n)). The same
computations yield that the restricted Hessian Hxf|X = Hxf + ||∇f(x)|| IIx,n is degenerate in
the direction u ∈ π0(Tan(Nor(X)), (x, n)) \ {0}.

□

With these two results, the homotopy equivalence with the surrogates sublevel setsX−r
t proved

in Section 4.3 allows to study the evolution of the topology of Xt around the critical value c.

Theorem 4.17 (Handle attachment around unique critical values). Let X be complementary regu-
lar and f : Rd → R. Assume f|X has only one critical point x in f−1(c) which is non-degenerate.
Then for any ε > 0 small enough, Xc+ε has the homotopy type of Xc−ε with a λx-cell attached,
where

λx := index of the Hessian of f|X at x

+ number of infinite curvatures at
(︃
x,

∇f(x)
||∇f(x)||

)︃
.
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Proof.

By Lemma 4.16, when ε, r > 0 are small enough, there is only one critical point xr in
f−1
r|X−r ((c− ε, c+ ε)). By C1,1 Morse theory, X−r

c+ε has the homotopy type of X−r
c−ε with a cell

added around xr. The dimension of the cell is λx for all r > 0 small enough by Lemma 4.15.
Now by Corollary 4.9, when r > 0 is small enough, X−r

c+ε and Xc+ε are homotopy equivalent,
and so are X−r

c−ε and Xc−ε. This is summarized by Figure 4.5.

Figure 4.5 – Commutative diagram in the proof of Theorem 4.17.

□

Finally, we prove that the previous result holds when there might be several critical points of
f|X sharing the same critical value.

Theorem 4.18 (Morse Theory for complementary regular sets). Let X ⊂ Rd be a complementary
regular set. Suppose f|X has a finite number of critical points, which are all non-degenerate. Each
critical level set X ∩ f−1({c}) has a finite number pc of critical points, whose indices (defined in
Theorem 4.17) we denote by λc1, . . . λ

c
pc

. Then:
— If [a, b] does not contain any critical value, Xa is a deformation retract of Xb.
— If c is a critical value, Xc+ε has the homotopy type of Xc−ε with exactly pc cells attached

around the critical points in f−1(c)∩X , of respective dimension λcp1 , . . . , λ
c
pc

for all ε > 0
small enough.

Proof.

The first point is Theorem 4.10. We turn our attention to the second point, which is a general-
ization of Theorem 4.17 to the case where several critical points of f|X have the same value.
Let c be a critical value of f|X . Put x1, . . . , xp the critical points of f|X inside f−1(c). Put

ni := − ∇f(xi)
||f(xi)|| and xri = xi − rni. Let n(x) be the function mapping x to the ni associated to

the closest critical point xi of x. This map is piecewise constant and defined almost everywhere.
Let Ui ⊂ Vi be respectively closed and open balls containing xi such that Vi ∩ Vj = ∅ when
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j ̸= i. Let ηc be a smooth function on Rd with values in [0, 1] such that ηc is constant of value
1 inside each Ui and 0 outside

⋃︁
Vi. The map nc : y ↦→ ηc(y)n(y) is well-defined and smooth

when the Ui are small enough. When r is small enough, the map γr : y ↦→ y + rnc(y) is a
diffeomorphism. Now define fr to be f locally translated around the critical points:

fr = f ◦ γr : y ↦→ f(y + rnc(y)).

From Lemma 4.15 we know that the (xri )1≤i≤p are non-degenerate critical points of X−r for
fr|X−r with corresponding index (λci )1≤i≤p. From Lemma 4.16, we know that xri is the only
critical point of fr|X−r inside γr(Ui) when r is small enough.
Now we prove that there are no critical points outside

⋃︁
i γr(Ui) when r is small enough. On

the one hand, outside this set, the sets Nor(X,x) ∩ Sd−1 and ∇f(x)
||∇f(x)|| have a fixed distance

separating them. On the other hand, when r goes to 0, the sets Nor(X−r, x) ∩ Sd−1 (resp.{︂(︂
x, ∇fr(x)

||∇fr(x)||

)︂}︂
) converge uniformly in x (as will soon be precised) in the Hausdorff distance

to Nor(X,x) ∩ Sd−1 (resp. ∇f(x)
||∇f(x)|| ) meaning by semi-continuity that for r small enough, the

two still cannot intersect.
More quantitatively, by the inverse function theorem X−r has a C1,1 boundary. Since ∇f does
not vanish in a neighborhood of f−1(c) ∩ X , we know that x ∈ X−r is a critical point of
fr|X−r if and only if x ∈ ∂X−r, {ν} = Nor(X−r, x) ∩ Sd−1 (i.e. ν is the normal at x) and⃓⃓⃓⃓⃓⃓

∇fr(x)
||∇fr(x)|| − ν

⃓⃓⃓⃓⃓⃓
= 0.

Remark that we have both

Nor(X−r) = {(x+ rν,−ν) | (x, ν) ∈ Nor(¬X)}

and

sup
(x,ν)∈Nor(X)

||∇f(x) − ∇fr(x+ rν)|| = O(r)

leading to

lim inf
r→0

inf
(x,ν)∈Nor(X−r)
x/∈∪iγr(Ui)
fr(x)=c

⃓⃓⃓⃓⃓⃓⃓⃓ ∇fr(x)
||∇fr(x)|| − ν

⃓⃓⃓⃓⃓⃓⃓⃓
≥ inf

(x,ν)∈Nor(¬X)
x/∈∪iUi
f(x)=c

⃓⃓⃓⃓⃓⃓⃓⃓ ∇f(x)
||∇f(x)|| − ν

⃓⃓⃓⃓⃓⃓⃓⃓
> 0. (4.23)

This shows that {xr1, . . . , xrp} is exactly the set of critical points of fr|X−r with value c. We
obtain X−r

c+ε from X−r
c−ε by gluing cells locally around each critical point as in classical Morse

theory.

□

Remark. The results proved in this section also hold when X ⊂ Rd has positive reach, essen-
tially because there is a correspondence between the critical points of f|X and those of (−f)|¬X

since Nor(¬X,x) = − Nor(X,x). The proofs have to be adapted by taking γcr : y ↦→ y+r ∇f(x)
||∇f(x)||

around any critical points.



CHAPTER 5
Image persistence

Some crucial tools of this thesis come from the field of persistence. In this chapter,
we expose the classical motivations and definitions of persistence theory, before intro-
ducing the notion of image persistence. Using results from Chapter 2, we prove an
image stability theorem in the following sense. If f : Rd → R is a Lipschitz map and
A ⊂ X ⊂ B ⊂ Rd are sets such that A,B both lie at Hausdorff distance less than ε to
X , we can build a persistence diagram from f|A, f|B at distance bounded by a multiple
of ε to the persistence diagram of f|X , provided that X is a sublevel set of a Lipschitz
map satisfying certain conditions. This adds to the traditional stability theorem which
bounds the distance between the diagrams of f|X and g|X by ||f − g||. Furthermore, we
prove an inequality on the average Euler characteristics of close persistent homology
diagrams satisfying some injection properties, which are verified by image persistence
diagrams. These two results will be essential in obtaining the geometric inference results
of Chapter 7.
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Persistence theory is the mathematical field devoted to the study of functors from the poset
category R to the vector spaces over some field, which are called persistence modules. Appearing
in the nineties (see [Per18] for an historical summary) as a tool in computational geometry destined
to quantitatively compare the topology of data sets, persistence theory went on to become its own
field of research, leading to the proofs of core results such as the structure theorem [ZC05], and
stability theorem [CSEH05]. The third pillar of persistence is the computability of the persistent
homology of Vietoris-Rips or Alpha filtrations of datasets in high-dimensions, which put the field
at the center of topological machine learning - also called topological data analysis. It has found a
considerable number of applications in various fields such as biology [RCK+17, RB19], study of
time series [PdM15, BCMR24], medicine [ACC+20, LSB+19], graph theory [AAF19]. It has also
proven to be a useful tool in symplectic geometry [PRSZ20] and statistical geometry [NSW08],
making it an asset in both applied and pure mathematics.

This chapter is divided in three sections. In the first, we broadly describe what we mean
by homology„ and we explain the original motivation of persistent homology. The second sec-
tion is an exposition of the classical notions of persistence theory, namely the decomposition of
tame modules in intervals, and the stability theorem. No proof will be given, and we refer the
hungry-for-evidence reader to the book [CdSGO16]. The third section will build on these ideas to
construct image persistence using definitions appearing first in [CSEHM09]. Thanks to Chapter 3
and results from [BL15], we prove results of which we will make good in in chapter Chapter 7
: the image stability theorem for Lipschitz functions (Theorem 5.12) and the χ-averaging lemma
(Lemma 5.16).

5.1 Context and motivation for persistence homology

5.1.1 A few reminders about homology

Let K be a field. By homology of a subset X of Rd over K, we mean the singular homology
of X equipped with the topology induced by the metric of Rd. It associates to X a K-vector space
Hi(X) for every i ∈ N, with Hi(X) = 0 when i > d. We omit the dependence on K as it will
not matter in our study. As the definition of singular homology is out of the scope of the present
document, we refer the curious reader to introductory texts such as [Hat02]. This reference also
contains the definitions of CW-Complexes and cellular homology, which gives another way to
define the homology of CW-complexes.

Proposition 5.1 (Homotopy invariance). Let X,Y be two subsets of Euclidean spaces sharing
the same homotopy type. Then they have isomorphic homology groups in every dimension. In
particular, when X has the homotopy type of a CW -complex, the homology of X coincides with
the cellular homology of said CW -complex.

Recall that singular homology is functorial.

Proposition 5.2 (Functoriality of the singular homology). For any continuous map h between
two subsets of Euclidean spaces X and Y , for every i ∈ N, there exists an associated linear
map h∗ : Hi(X) → Hi(Y ). Moreover, if A,B,C are three subsets of Euclidean spaces, with
continuous maps f : A → B and g : B → C, we have:

(g ◦ f)∗ = g∗ ◦ f∗.
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In particular, if (Xt)t∈R is a family of subsets of Rd such that s ≤ t implies Xs ⊂ Xt - also
called a filtration of Rd - then we have linear maps ϕts : Hi(Xs) → Hi(Xt) such that ϕrt ◦ϕts = ϕrs
for every triplet s ≤ t ≤ r.

Singular homology gives a formal and topologically consistent definition of what we in-
tuitively perceive as the holes of a set; with the number of i-dimensional holes of X being
equal to dimHi(X). Because of the so-called torsion phenomenon in homology, this number
might depend on the choice of the field K. However, the Euler characteristic of X , defined as
χ(X) =

∑︁∞
i=0(−1)i dim(Hi(X)) when the sum is well-defined, is independent of the field K.

Proposition 5.3 (Additivity of Euler-Characteristic and inclusion-exclusion principle). Let X,Y
be two compact subsets of Rd such that the homology of X,Y,X ∩ Y and X ∪ Y all have finite
dimensions. Then we have

χ(X ∪ Y ) + χ(X ∩ Y ) = χ(X) + χ(Y ). (5.1)

We also speak of the inclusion-exclusion principle when additivity is used iteratively. Letting
X1, . . . Xn be compact subsets of Rd, we have

χ(X1 ∪ · · · ∪Xn) =
∑︂

I⊂[[1,n]]
I ̸=∅

(−1)Card(I)−1χ(∩i∈IXi). (5.2)

The following proposition shows that the number of features of reasonable shapes is finite and
that the Euler characteristic is well-defined. Recall that a Euclidean neighborhood retract is a
subset X of some Rd, such that there is a neighborhood V ⊂ Rd of X such that V deformation
retracts to X

Proposition 5.4 (Euclidean neighborhood retracts have finitely generated homology). Let X ⊂
Rd be a Euclidean neighborhood retract. Then it has the homotopy type of a CW-Complex of
dimension less than d. In particular, we have dimHi(X) < ∞ for all 0 ≤ i ≤ d and Hi(X) = 0
else.

5.1.2 Motivation

Before delving into algebraic considerations, we want to motivate and give intuition to the
concept of barcodes. Say we have at our hands data that is of topological nature, e.g., a collection
X of points lying on a circle with reasonable noise, as in Figure 5.1.

Figure 5.1 – Point cloud lying close to a circle
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While a point cloud does not have an interesting topology, one can guess the topology of the
(supposedly) underlying set by considering the union of balls of a certain radius t around those
points, which forms the offset Xt. Admittedly, the topology obtained is indeed that of a circle for
a good choice of a radius (Xt3 in Figure 5.2); but should t be too low, the topology of Xt consist
in too many connected components (Xt1) or some small cycles (Xt2); and should it be too large,
Xt would be homeomorphic to a ball (Xt4). The number of cycles of Xt as a function of t can
be large at first, with the many small circles, then stays at one until Xt has a contractile homotopy
type.

Figure 5.2 – Evolution of the homology of Xt when t varies.

The idea of persistent homology is to keep track of the values at which features are born, i.e., at
which radius the feature appears, and values at which they die. Since offsetsXr = dX(−∞, r] are
sublevel sets of the distance function, the previous approach can first be generalized by studying
the evolution of the topology of the closed sublevel sets filtration r ↦→ f−1(−∞, r] for some map
f : Rd → R. When f is a Morse function, we already know that the topology of the filtration
changes only at critical values, and we know that its homotopy type evolves by gluing a cell of
suitable dimension around critical points of said value. Persistent homology consists in the study
of maps of the form t ↦→ Hi(f−1(−∞, t]). Compared to Morse theory, the interests are twofold:

— The theory should apply to sublevel sets of functions with regularity less than C2, such as
distance functions to a set X;

— The birth and the death of a feature are critical values should be linked.
We will see in the following section how to construct a rigorous theory on algebraic ground from
these principles.
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5.2 Basics in persistence theory

5.2.1 Persistence modules

Definition 5.5 (Persistence modules). Let K ∗ be a field. A persistence module M is a functor
R → VectK, that is a collection of vector spaces (Mt)t∈R and maps ϕts : Ms → Mt for any
s ≤ t ∈ R, such that ϕut ◦ ϕts = ϕus for any ordered triple s ≤ t ≤ u in R.

From the functoriality of singular homology (Proposition 5.2), we can associate to any real-
valued map f the persistent homology modules (Hi(f−1(−∞, t]))t∈R for any i ∈ N. Given any
interval I in R, another simple example is obtained by letting 1I be the persistence module defined
by

(1I)t :=
{︄

K when t ∈ I
0 otherwise

and such that linear maps between (1I)s → (1I)t are the identity K → K when s < t ∈ I . We
will see that direct sums of interval modules play an important role in persistence theory. Before
that, we define a pseudo-distance over the space of persistence modules.

Definition 5.6 (Morphisms, δ-interleavings and interleaving distance). Let M,N be two persis-
tence modules and let δ ≥ 0.

— M δ denotes the persistence module (Mt+δ)t∈R, i.e, the module M shifted by δ.
— A morphism j between two persistence modules N and M is a natural transformation

between functors, that is, a collection of linear maps (jt)t∈R : Nt → Mt such that the left
diagram in Figure 5.3 commutes.

— The modules N and M are said to be δ-interleaved when there exist two morphisms u, v
respectively from M to N δ and from N to M δ such that the right diagram in Figure 5.3
commutes.

— The interleaving distance between M and N is defined as:

dI(M,N) := inf{δ ∈ R+ | M and N are δ-interleaved}.

Ms Mt Ms Ms+δ Ms+2δ

Ns Nt Ns Ns+δ Ns+2δ

js jt
vs

us

vs+δ

us+δ

Figure 5.3 – Commutative diagrams in the definition of morphisms (left) and δ-interleaving (right).

The interleaving distance is in fact only a pseudo distance: for any compact interval I of R,
is it easy to see that dI(1I ,1int(I))) = 0 in spite of these two modules being non-isomorphic.
The following structure theorem shows that interval persistence modules are the building blocks
of persistence theory with respect to this pseudo-metric.

∗. Again, the choice of the field K has no importance.
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Theorem 5.7 (Interval decomposition theorem [CdSGO16]). LetM be a persistence module such
that for all s < t in R, the rank of the linear map Ms → Mt is finite. Then there exists a multiset
I of closed intervals of R with positive length such that:

dI(M,
⨁︂
I∈I

1I ) = 0.

Moreover, for any σ > 0 and compact segment K of R, the numbers of intervals of length greater
than σ intersecting K is finite. When(Mt) is the persistent homology module of a bounded func-
tion such that dimMt is uniformly bounded, the set I is finite. The multiset I is unique up to
permutations, and its elements are the intervals decomposing M .

5.2.2 Persistence diagrams

The persistence diagram dgm(M) associated to the persistence module M is the multiset of
R2 whose coordinates are the bounds the intervals decomposing M :

dgm(M) :=
⨆︂
I∈I

{(inf I, sup I)}.

More generally, we call persistence diagram any locally finite multiset of {(t, s) ∈ Rd | t < s}.
We choose to visually represent persistence diagrams as barcodes, that is, as a pile of intervals, as
in Figure 5.2. To compare them, we use partial bijections between barcodes, also called matchings.

Figure 5.4 – A matching between two diagrams.

The notion of δ-interleaving between persistence modules transfers to their associated dia-
grams via the notion of δ-matching.

Definition 5.8 (δ-matchings and bottleneck distance). A δ-matching between two persistence di-
agrams D,D′ is a bijective map γ : C → C ′, between subsets of D,D′ such that for any c ∈ C,
||γ(c) − c||∞ ≤ ε, and such that for any (a, b) ∈ (D \ C) ∪ (D′ \ C ′), |a− b| ≤ 2ε.

Figure 5.5 – The previously depicted matching is a δ-matching.

The bottleneck distance between two diagrams D,D′ is defined as:

dB(D,D′) := inf{δ | There exists a δ-matching between D and D′}.
Theorem 5.9 (Isometry theorem). For any pair of persistence modules M,N, we have:

dI(M,N) = dB(dgm(M),dgm(N)).
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5.2.3 Comparison with Morse theory

We now precise how Morse theory and persistent homology are linked.

Let X ⊂ Rd and f : X → R be a bounded, locally Lipschitz map. As long as the filtration
Xt = X ∩ f−1(−∞, t] has a finitely generated homology for all but a finite number of filtration
values, the family (Hi(Xt))t∈R forms a persistence module decomposable into intervals for every
i ∈ {0, . . . , d}. Assume further that there are a finite number of critical points {x1, . . . , xp} =
crit(f|X) of f|X with associated values ci = f(xi), such that for ε > 0 small enough, in a
neighborhood of xi, the topology of Xci+ε is obtained by gluing a cell of dimension λi around
xi in Xci−ε, as in Morse theory. As we have seen in the previous Chapter 4, this ensures that Xt

has the homotopy type of a CW-complex for every regular value t of f . From cellular homology,
we are able to show that among all dimensions of persistent homology diagrams, there is one
topological event per critical point. This is illustrated by Figure 5.6.

Figure 5.6 – Morse height filtration on a t-shirt. Critical points can have the same height, but they
each contribute to independent topological events.

Proposition 5.10 (Morse theory and persistence diagrams). In the previous setting, the number of
topological events at filtration value t is exactly Card(crit(f|X ∩ f−1(t)) the number of critical
points having value t, and each such critical point xi is associated to either the birth of a feature
of dimension λi or the death of a feature of dimension λi − 1.

Proof.

Let y1, . . . , yk be the critical points of f|X with value t, and λi the dimension of the cell glued
around yi in the filtration. For every ε > 0 small enough, there is a CW -complex A− with the
same homotopy type as Xt−ε, such that Xt+ε has the homotopy type of the CW -complex A+

obtained from A− by the gluing of cells of dimension λi in A−. Recall that cellular homology
and singular homology coincide. The cellular homology of A− is obtained by the cellular com-
plex consisting of free Abelian groups Ci(A±) generated by the cells and a boundary operator
∂±
i : Ci(A±) → Ci−1(A±), andHi(A±) = ker(∂±

i )/im(∂±
i+1). Decompose the gluing process

by the following filtration of CW -complexes:

A− = A1 ⊂ A2 ⊂ · · · ⊂ Ak = A+.

Here Aj+1 is obtained from Aj by gluing one cell of dimension λj . Either the dimension of
the image of the boundary operator im ∂λj

grows by one, in which case dimHλj−1(Aj) =
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dimHλj−1(Aj−1) − 1, which marks the death of a feature; or it does not, and dimHλj
(Aj) =

dimHλj
(Aj−1) + 1, which marks a birth. In both cases, these are the only changes among the

homology groups, and there are at most k changes in homology between A+ and A−. Since
∂+
i has image in Ci−1(A−) by assumption, any non-trivial homology class of dimension λ

appearing between Aj and Aj−1 cannot be killed by the emergence of a feature at a later stage
of the filtration, and thus there are exactly k changes in homology classes between A− and A+.

□

5.3 Image Persistence

5.3.1 Definitions

Definition 5.11 (Image Persistence). Let M,N be two persistence modules and f : M → N be
a morphism between them. The image persistence module im f is the persistence module with
vector space (im f)t = f(Mt) at value t ∈ R and whose connecting maps (im f)a → (im f)b are
the restrictions of Na → Nb to (im f)a for every pair a ≤ b ∈ R.

We will only deal with image persistence modules arising in the following situation. Let
ϕ : Rd → R and A ⊂ B ⊂ Rd. For every a ∈ R, there is an inclusion

A ∩ ϕ−1(−∞, a] = Aa Ba = B ∩ ϕ−1(−∞, a],ιa

which yields for every dimension 0 ≤ j ≤ d a morphism of persistence modules ι•j :

ι•j : Hj(A•) → Hj(B•).

We write dgm(ϕ,A,B) =
⨆︁d
j=0 dgm(im ι•j ) for the persistence diagram obtained by taking the

direct sum of the homology induced modules in every dimension. When the decomposition into
interval is finite, its Euler characteristic χ(dgm(ϕ,A,B)(r)) is the alternating sum of the ranks
of ι•j at filtration value r.

5.3.2 Image stability theorem

We are now in position to prove a stability theorem for image persistence modules associated
with sublevel set filtrations of locally Lipschitz functions.

Theorem 5.12 (Image persistence stability theorem). Let h, h̃ : Rd → R be two real-valued
function such that ∥h − h̃∥∞ ≤ ε and f : Rd → R be a κ-Lipschitz function. Denote X̃a =
h̃−1(−∞, a] and Xa = h−1(−∞, a]. Suppose that there exists µ > 0 such that on X2ε \ X−2ε,
h is locally Lipschitz and ∆(∂*h(x)) ≥ µ. Then we have:

dB(dgm(f, X̃−ε, X̃ε),dgm(f|X)) ≤ 2κε
µ
. (5.3)

Proof.
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This is an extension of the stability theorem for noisy domains of [CSEHM09] from distance
functions to Lipschitz functions. We adapt this proof to our setting using approximate inverse
flows of Lipschitz functions obtained in Proposition 2.9. For any σ > 0, take Cσ(·, ·) a contin-
uous deformation retraction between X2ε and X given by Proposition 2.9. Let x ∈ X2ε. Each
trajectory Cσ(·, x) is 2ε

µ−σ -Lipschitz and needs at most time 1 to send x to X . For every a ∈ R,
Cσ(1, ·) : X2ε

a → Xa+c is a continuous map with c := 2κε
µ−σ . With the same reasoning, we ob-

tain a continuous map Xa → X−2ε
a+c . The homotopies induced by the flows yield the following

commutative diagram, where the vertical and horizontal maps are induced by inclusions:

H∗(X2ε
a ) H∗(X2ε

a+c) H∗(X2ε
a+2c)

H∗(X̃ε
a) H∗(X̃ε

a+c) H∗(X̃ε
a+2c)

H∗(Xa) H∗(Xa+c) H∗(Xa+2c)

H∗(X̃−ε
a ) H∗(X̃−ε

a+c) H∗(X̃−ε
a+2c)

H∗(X−2ε
a ) H∗(X−2ε

a+c ) H∗(X−2ε
a+2c)

As in [CSEHM09], the two colored arrow paths provide interleavings showing that, for every
σ ∈ (0, µ):

dB(dgm(f, X̃−ε, X̃ε),dgm(f|X)) ≤ 2κε
µ− σ

.

□

Now let X,Y be two compact sets of Rd and f = dx : z ↦→ ||z − x|| be the distance function
to any point x. Applying the previous theorem with h = dX + 2ε, h̃ = dY + 2ε yields the
following statement:

Corollary 5.13 (Image stability theorem for compact sets). Let µ ∈ (0, 1], ε > 0 and X,Y be two
compact subsets of Rd such that dH(X,Y ) ≤ ε ≤ 1

4 reachµ(X). Then for any x ∈ Rd,

dB(dgm(dx, Y ε, Y 3ε),dgm(dx|X2ε )) ≤ 2ε
µ
. (5.4)

5.3.3 Injecting property and χ-averaging lemma

Now we use results from Bauer & Lesnick [BL15] to show that a persistence module sand-
wiched between two persistence modules cannot be smaller in a certain sense than the image per-
sistence module. We formalize that by saying that a persistence diagram D′ injects into another
persistence diagram D when there is an injective map ϕ : D′ → D such that ϕ((a′, b′)) = (a, b)
with a ≤ a′ and b′ ≤ b for all (a′, b′) in D′.
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Theorem 5.14 (Interleaving of bars in image persistence). Let A,B,C be persistent modules that
are decomposable into intervals. Let furthermore be φ,ψ morphisms of persistent modules and
write j = ψ ◦ φ:

A B C
φ

j

ψ

Then dgm(im j) injects into dgm(B). In particular, if B has a finite decomposition in inter-
vals, then so does im j.

Proof.
The morphisms of persistence modules im(φ) → B, im(φ) → im(j) are respectively
monomorphism and an epimorphism of persistence modules. By Lemma 4.2 in [BL15], we
know that there exist injections of barcodes dgm(im φ) ↪→ dgm(B) and dgm(im j) ↪→
dgm(im φ) respectively extending the intervals to the left and to the right.

□

Remark 5.15 – For a persistence diagram D and for two real numbers a < b, define N b
a(D) to be

the total number of bars of D intersecting with [a, b]. The theorem above implies that, with the
same notations, N b

a(dgm(im j)) ≤ N b
a(dgm(B)). This is a generalization to persistence modules

of the fact that the rank of a linear map cannot exceed the dimension of a vector space it factors
through.

The next lemma bounds the average difference of the Euler characteristics of close persistent
diagrams.

Lemma 5.16 (χ-averaging lemma). Let D,D′ be two homology persistent diagrams with
dB(D,D′) ≤ ε. Then for any a < b ∈ R we have:∫︂ b

a

⃓⃓
χ(D(t)) − χ(D′(t))

⃓⃓
dt ≤ 2ε(N b

a(D) +N b
a(D′)). (5.5)

If D′ injects into D, we have:∫︂ b

a

⃓⃓
χ(D(t)) − χ(D′(t))

⃓⃓
dt ≤ 2εN b

a(D). (5.6)

Proof.
A look at an ε-matching between barcodes, such as illustrated in Figure 5.5, might give a good
intuition for these inequalities. The first inequality is a slight extension of an argument obtained
in [CSE07]. Let Ii (resp. I ′

i) be the set of intervals of the decomposition of D (resp. D′) in
dimension i. We have:

χ(D(t)) =
d∑︂
i=0

(−1)i
∑︂
Ii∈Ii

1Ii(t).

Let γ be an ε-matching betweenD andD′. Define Ci and C ′
i to be the respective largest subsets

of Ii and I ′
i matched bijectively by γ. We have:∫︂ b

a

⃓⃓
χ(D(t)) − χ(D′(t))

⃓⃓
dt ≤

d∑︂
i=0

(︂ ∑︂
Ii∈Ci

∫︂ b

a

⃓⃓⃓
1Ii − 1γ(Ii)

⃓⃓⃓
dt

+
∑︂

Ii∈Ii\Ci

∫︂ b

a
1Ii(t) dt+

∑︂
I′

i∈I′
i\C′

i

∫︂ b

a
1I′

i
(t) dt

)︂
.
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Since γ is an ε-matching, each of these integrals is bounded by 2ε. Now for the first term in
the right-hand side, the support of the map

⃓⃓⃓
1Ii − 1γ(Ii)

⃓⃓⃓
is included in Ii ∪ γ(Ii), meaning

that its integral over [a, b] vanishes if none of these intervals intersect with (a, b). As for the
remaining terms, only intervals intersecting with [a, b] contribute to the sum. Overall, there is
at most one non-vanishing contribution per interval in D ∪ D′ whose intersection with (a, b)
is non-empty, and no contribution otherwise. The total number of non-vanishing integrals is
bounded by N b

a(D) +N b
a(D′).

In case D′ injects into D, there is a ε-matching such that C ′
i = I ′

i and such that γ(Ii) ⊂ Ii for
every interval Ii of D, meaning there is at most one non-vanishing contribution per interval of
D whose intersection with (a, b) is non-empty, leading to the desired bound 2εN b

a(D).

□



CHAPTER 6
Curvatures of subsets of

Euclidean spaces

In this chapter, we define the curvatures of various classes of subsets of Rd pertaining
to our study, notably the curvatures of complementary regular sets. This culminates
with the principal kinematic formula, from which one can recover the curvatures of a
set from the Euler characteristic of intersections with balls of fixed radius. This forms
the explicit bridge between topology and geometry on which this thesis rests. Aiming
at being as self-contained as possible, our presentation includes the classical definition
of curvatures of sets with positive reach, and some of their properties. Moreover, we
highlight various results related to curvatures, such as their connections with Morse
theory. We compare the properties of the curvatures of complementary regular sets to
the ones of other classical classes of subsets of Rd, using the terminology of the so-called
normal cycles.

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Curvatures of sets admitting a normal bundle . . . . . . . . . . . 79

6.2.1 Curvatures of C1,1 domains . . . . . . . . . . . . . . . . . 79
6.2.2 Curvatures of sets with positive reach . . . . . . . . . . . . 81
6.2.3 Curvatures of complementary regular sets . . . . . . . . . . 84
6.2.4 R-mass of a set . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.5 Properties of curvature measures . . . . . . . . . . . . . . . 85

6.3 Connections to Morse theory . . . . . . . . . . . . . . . . . . . . 87
6.3.1 Almost all linear forms and distance to a point functions are

Morse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Curvatures and Morse theory . . . . . . . . . . . . . . . . . 90

6.4 The theory of normal cycles . . . . . . . . . . . . . . . . . . . . . 92
6.4.1 Axiomatic definition of the normal cycle of a compact subset

of Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.2 Normal cycles of sets admitting a normal bundle . . . . . . 94
6.4.3 Comparison with other classes of sets admitting a normal cycle 96

77





6.2 – Introduction 79

6.1 Introduction

The object of this chapter is to define the geometric quantities studied in this thesis, namely
the curvatures of certain subsets of Euclidean spaces. The idea of measuring how far a set is
from being flat is fundamental across various fields of geometry. In Riemaniann geometry, this
is measured by the curvature tensor, whose study provides great hindsight on the geometry of
the manifold and has been the subject of numerous studies for decades. Taking inspiration from
characterizations using geodesic triangles on manifolds, the notion of curvatures can be extended
in a weaker sense to any geodesic metric space. Research around this concept has proven to be
rich and complex, with numerous applications e.g., in geometric group theory [Gro87, Ago13] or
geometric topology [Per02].

In the context of this thesis, we are interested in measuring the curvatures of subsets of Eu-
clidean spaces. While geodesics lying in the interior of such sets are obviously flat, the geometry
of their boundaries can be curved. In 1929, Weyl [Wey39] already remarked that the curvatures of
a submanifold with Riemannian metric inherited from Rd could be retrieved through the proper-
ties of close tubular neighborhoods. Interestingly enough, Steiner showed as early as 1842 [Ste82]
that the same fact holds for convex polyhedra. Unifying these two points of view in a coherent
theory was first done by Federer [Fed59] through the study of sets of positive reach. Since then,
several works aimed at extending this theory to broader classes of sets while keeping its structural
properties. These extensions were obtained using various arguments, such as the additiveness of
curvature measures [Sch88, Zä87], properties of the sublevel sets of certain classes of functions
[Fu94, PR13], Morse theory [BK00] and o-minimal structures [Ber07]. We add that the recent
monograph of Rataj & Zähle [RZ19] provides a self-contained presentation describing the curva-
tures of set among several of the aforementioned classes.

6.2 Curvatures of sets admitting a normal bundle

6.2.1 Curvatures of C1,1 domains

Let X ⊂ Rd be a C1,1 domain. Recall that on ∂X there exists a Lipschitz map n : ∂X ↦→
Sd−1 of outward pointing normals called the Gauss map. This map is differentiable Hd−1-almost
everywhere on ∂X and, when it exists, its differential Dyn at y ∈ ∂X is a symmetric linear map
called the Weingarten map.

Definition 6.1 (Principal curvatures and directions for C1,1 domains). Let X ⊂ Rd be a C1,1 do-
main. Vectors (bi)1≤i≤d−1 forming orthonormal basis of eigenvectors of Dyn are called principal
directions, and their associated eigenvalues (ki)1≤i≤d−1 are called principal curvatures. Principal
directions are orthogonal to n(y).

Proposition 6.2 (Bound on the principal curvatures). LetX be a C1,1 domain. Then any principal
curvature k(y) of its differential at a point y where n is differentiable is bounded from below:

k(y) ≥ − 1
reach(X) . (6.1)

Proof.
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Figure 6.1 – Gauss map on the boundary of a C1,1-domain. Dotted lines around points a, b, c
represent principal directions.

Let x, y ∈ X . For any 0 < r < reach(X), we have ||y − x− rn(x)||2 ≥ r2 and
||x− y − rn(y)||2 ≥ r2. Expanding and combining these inequalities and then letting r →
reach(X), we obtain :

⟨n(y) − n(x), x− y⟩ ≤ ||x− y||2

reach(X) . (6.2)

from which the desired inequality follows.
□

From these definitions, we want to extend the definition of principal curvatures and directions
to sets which have positive reach or which are complementary regular. Before doing so, we remark
that the two concepts are mutually exclusive among sets which are not C1,1 domains.

Proposition 6.3 (Sets which are of positive reach and complementary regular are C1,1 domains.).
LetX be a compact subset of Rd which is both complementary regular and of positive reach. Then
X is a C1,1-domain.

Proof.
Recall from the characterization of complementary regular set that for every r in
(0, reach(¬X)), we have X = (X−r)r. We will prove that reach(X−r) = r + reach(X),
which implies that X = dX−r (−∞, r] with r a regular value of dX−r , which is C1,1.
Even though the map dX−r might not be differentiable, recall from Definition 3.8 there is a con-
tinuous flow on Rd \ X−r starting from any point outside X−r defined by Lieutier in [Lie04]
whose arc-length trajectories make dX−r increase at speed ||∇X−r ||, where ∇X−r is the gener-
alised gradient of dX−r . Outside X , it coincides with ∇X . Now if a point in ∂X had distinct
closest points in X−r, then so would have any point in its trajectory by [Lie04, Lemma 4.17].
Since X is complementary regular, r is regular value of d−r

X and the flow of dX−r is strictly
increasing around ∂X , and thus leaves X; however, inside Xreach(X), the generalized gradient
∇X−r coincide with ∇X and has thus norm one. This contradicts the fact that the trajectory
keeps having distinct closest points in X−r.

□
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6.2.2 Curvatures of sets with positive reach

Let X be a subset of Rd with positive reach. Contrary to C1,1 domains, ∂X is not necessarily
a hypersurface and can even have zero (d− 1)-dimensional Hausdorff measure, with the example
of submanifolds of Rd with codimension greater than 2. To extend the definitions of principal
curvatures and directions consistently with the ones of C1,1 domains, we use the normal bundle
of X . Recall from Definition 3.27 that Nor(X) =

{︂
(x, n) |x ∈ ∂X, n ∈ Nor(X,x) ∩ Sd−1

}︂
is a

(d−1)-Lipschitz submanifold of Rd×Sd−1 for anyX . This entails that Hd−1-almost everywhere
in Nor(X), pairs (x, n) are regular, i.e., their tangent cone Tan(Nor(X), (x, n)) is a (d − 1)-
dimensional space.

Definition 6.4 (Principal curvatures and principal directions). Let X ⊂ Rd be a set of positive
reach and (x, n) be a regular pair of Nor(X). A family b1, . . . , bd−1 of unit vectors of Rd orthog-
onal to n is said to be principal directions of X at (x, n) when there exists a family k1, . . . , kd−1
in R ∪ {∞} such that ⎛⎝ 1√︂

1 + k2
i

bi,
ki√︂

1 + k2
i

bi

⎞⎠
1≤i≤d−1

is an orthonormal basis of Tan(Nor(X), (x, n)), with the convention that 1√
1+∞2 = 0 and

∞√
1+∞2 = 1.

Definition 6.5 (Sets admitting a normal bundle). The previous definitions of principal directions
and principal curvatures can be straightforwardly extended to complementary regular sets. As
these two classes share similar properties, we say that any set which is either of positive reach or
complementary regular admits a normal bundle.

Now we want to see how having a positive reach ensures the existence of principal directions
and principal curvatures. The offset Xr is a C1,1 domain, and thus admits a Gauss map nr :
∂Xr → Sd−1 coinciding with ∇dX , which is differentiable Hd−1-almost everywhere in ∂Xr. By
the closed formula for dX , the projection map ξX : Xr \X → X coincides with Id− 1

2∇(d2
X)(x).

The map

ΞX :
{︄
Xr \X → Nor(X)

x ↦→ (ξX(x),∇dX(x))

has the same set of differentiable points as ∇dX . Furthermore, its differential is a symmetric
isomorphism.

Proposition 6.6 (Tangent spaces of normal bundles of sets with positive reach [Fu89a]). Let
X be a subset of Rd and r be a real such that 0 < r < reach(X). Let y ∈ ∂Xr. Then
Tan(Nor(X),ΞX(y)) is a (d− 1)-vector space if and only if ∇dX is differentiable at y, and

(DyΞX)| Tan(∂Xr,y) = (Id− rDy∇dX , Dy∇dX)

is a symmetric isomorphism between Tan(∂Xr, y) and Tan(Nor(X),ΞX(y)).

From this proposition, one can obtain explicit pointwise principal curvatures and principal
directions of a set with positive reach.



82 CHAPTER 6 — Curvatures of subsets of Euclidean spaces

Proposition 6.7 (Principal curvatures and principal directions of a set with positive reach.). Let
X be a set of positive reach with 0 < r < reach(X) and assume that ∇dX is differentiable at
the point y ∈ ∂Xr. Let (bri )1≤i≤d−1 principal directions of Xr at y and (kri )1≤i≤d−1 be their
associated principal curvatures at point y. Then − 1

reach(X)−r ≤ kri ≤ 1
r for any 1 ≤ i ≤ d− 1.

Moreover, let bi = bri and

ki :=
{︄

kr
i

1−rkr
i

if kri <
1
r

∞ if kri = 1
r .

Then (b1, . . . bd−1) are principal curvatures of X at (x, n), and their associated principal curva-
tures (k1, . . . , kd−1) belong to [− 1

reach(X) ,∞].

Proof.

Thanks to Proposition 6.6, the only claim left to prove is − 1
reach(X)−r ≤ kri ≤ 1

r from which
the bounds on ki follow. The left-hand side inequality comes directly from Proposition 6.2 and
reach(Xr) ≥ reach(X) − r. As for the right-hand side, remark that reach(¬Xr) ≥ r and
that Nor(¬Xr) = ρ(Nor(Xr)) with ρ : (x, n) ↦→ (x,−n), as will be exposed in more details
in Section 6.2.3. Notably, this implies that −kri is a principal curvature of ¬Xr at the pair
(x, x + rn), which is regular by Proposition 6.6. Applying Proposition 6.2 once again yields
−kri ≥ −1

r .

□

Proposition 6.8 (The map t ↦→ Vol(ξ−1
X (U)∩Xt) is a polynomial for t ∈ [0, reach(X)]). LetX ⊂

Rd be a set with positive reach. Let U be an open subset of Rd. The map t ↦→ Vol(ξ−1
X (U) ∩Xt)

is a polynomial for t ∈ [0, reach(X)].

Proof.

Let Nor(X,U) := {(x, n) |x ∈ U, (x, n) ∈ Nor(X)}. This set is Hd−1-measurable. Since the
map

ϕ :
{︄

Nor(X,U) × [0, r] → ξ−1
X (U) ∩ (Xr \X)

(x, n, t) ↦→ x+ tn

is bilipschitz, by the change of variable formula, we have:∫︂
ξ−1

X (U)∩(Xr\X)
1 dHd−1 =

∫︂
Nor(X,U)×[0,r]

Jdϕ(x, n, t) dHd−1(x, n) dt

=
∫︂

Nor(X,U)×[0,r]

d−1∏︂
i=1

1 + tki√︂
1 + k2

i

dHd−1(y) dt.

which is indeed a polynomial in t. Adding the volume of
(︁
ξ−1(U) ∩X

)︁
= U ∩ X to the

previous quantity yields the desired result.

□
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Definition 6.9 (Curvature measures and intrinsic volumes of a set with positive reach). As a func-
tion of U , the coefficients of the polynomial of Proposition 6.8 define signed measures which we
call curvature measures Ck(X, ·) of X:

Vol(ξ−1
X (U) ∩Xt) =:

d∑︂
i=0

ωit
iCd−i(X,U). (6.3)

The intrinsic volumes (Vi(X))0≤i≤d of a set with positive reach are defined as the full measure
of the corresponding curvature measures, i.e., Vi(X) = Cd−i(X,X). Equivalently, they can be
defined as the coefficients of the volume of t-offsets with t ∈ [0, reach(X)].

Vol(Xt) =:
d∑︂
i=0

ωit
iVd−i(X). (6.4)

Equation (6.4) is called Steiner’s formula.

From the proof of Proposition 6.8, one infers the following explicit representations of curvature
measures.

Proposition 6.10 (Explicit representation of the curvature measures of sets with positive reach).
Let X ⊂ Rd be a set with positive reach. For 0 ≤ i ≤ d − 1, the i-th curvature measure is a
function of the principal curvatures of X , via the formula

Ci(X,U) = 1
(d− i)ωd−i

∫︂
Nor(X,U)

d−1∏︂
i=1

1
(1 + k2

i )1/2 Σd−i+1 (k1 , . . . , kd−1) dHd−1(x, n),

(6.5)
where

Σj : (u1, · · · , ud−1) ↦→
∑︂

I⊂{1,...,d−1}
Card(I)=j

∏︂
i∈I

ui

is the canonical j-homogeneous symmetric polynomial in (d− 1) variables.
When i = d, we have

Cd(X,U) = Vol(X ∩ U). (6.6)

Moreover, if X is a C1 domain, the curvature measures can be represented as integrals on
∂X:

Ci(X,U) = 1
(d− i)ωd−i

∫︂
∂X∩U

Σd−i (k1, . . . kd−1) dΩ (6.7)

where Ω is the volume form on ∂X compatible with the orientation of the domain.

Proof.

The first two equations are direct computations from Proposition 6.8. WhenX is aC1,1 domain,
Equation (6.7) is a consequence of Equation (6.5) along with the bijective change of variable
induced by the projection onto the spatial coordinate Nor(X) → X, (x, n) ↦→ x.

□
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6.2.3 Curvatures of complementary regular sets

Let X ⊂ Rd be a complementary regular set. By definition, its complement set ¬X = Rd \X
has positive reach, and they share the same boundaries, i.e., ∂X = ∂¬X . Recall that the normal
bundle of X is a (d− 1)-Lipschitz submanifold of Rd × Sd−1 defined by:

Nor(X) = ρ(Nor(¬X)) =
⋃︂

x ∈∂X
{x} × (Nor(X,x) ∩ Sd−1), (6.8)

where ρ : (x, n) ↦→ (x,−n) is the antipodal map of Rd × Sd−1. This entails a correspondence
between principal directions and curvatures of X and ¬X , which flips the sign of the principal
curvatures.

Proposition 6.11 (Tangent spaces of complementary regular sets). Let X be a complementary
regular set. Then (x, n) is a regular pair of Nor(X) if and only if (x,−n) is a regular pair of
Nor(¬X). Moreover, the map (u, v) → (u,−v) is an isomorphism between Tan(Nor(X), (x, n))
and Tan(Nor(¬X), (x,−n)).

In particular, a family
(︃

1√
1+k2

i

bi,
ki√
1+k2

i

bi

)︃
1≤i≤d−1

is a basis of orthogonal unit vectors of

Tan(Nor(X), (x, n)) if and only if
(︃

1√
1+k2

i

bi,
−ki√
1+k2

i

bi

)︃
1≤i≤d−1

is an orthogonal basis of unit

vectors in Tan(Nor(¬X), (x,−n)).

Remark 6.12 – Even though infinite curvature are invariant under the map (u, v) ↦→ (u,−v) we
chose the convention that infinite curvatures of complementary regular sets are of negative sign.
Since sets which are complementary regular and of positive reach areC1,1 domain, they have finite
principal curvatures, which ensures that this convention is consistent.

Definition 6.13 (Curvature measures of complementary regular sets). Let X ⊂ Rd be a comple-
mentary regular set. The curvature measures of X are defined from ¬X for a Borelian set U via
: {︄

Ci(X,U) := (−1)d−i−1Ci(¬X,U) when 0 ≤ i ≤ d− 1
Ci(X,U) := Vol(X ∩ U) when i = d.

(6.9)

For 0 ≤ i ≤ d− 1, this is equivalent to the explicit representation

Ci(X,U) = ((d− i)ωd−i)−1
∫︂

Nor(X,U)

d−1∏︂
i=1

(︂
1 + k2

i

)︂−1
Σd−i+1 (k1, . . . kd−1) dHd−1(x, n)

(6.10)
where ki = ki(x, n) are principal curvatures of Nor(X) at (x, n).

6.2.4 R-mass of a set

We are now able to define the R-curvature mass of a set admitting a normal bundle. This
quantity will appear in the explicit convergence bounds of our main results in Chapter 7.

Definition 6.14 (R-curvature mass of a compact set admitting a normal bundle). Let X ⊂ Rd be
a compact subset of Rd admitting a normal bundle and let R > 0. The R-curvature mass of X is
defined by:

MR(X) :=
∫︂ R

0

∫︂
Nor(X)

d−1∏︂
i=1

|1 + tκi(x, n)|√︁
1 + κi(x, n)2 dHd−1(x, n) dt.
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The R-mass of a set can be bounded by a multiple of Hd−1(Nor(X)).

Proposition 6.15 (Bounds on MR(X)). Let X admit a normal bundle.
If R ≤ reach(X), we have:

MR(X) =
d∑︂
i=1

RiωiVd−i(X). (6.11)

For any R > 0, we have:
MR(X) ≤ CR(d)Hd−1(Nor(X)), (6.12)

where

CR(d) :=
∫︂ R

0
(1 + t2)

d−1
2 dt.

Proof.
The inequality of Equation (6.11) comes from the fact that for any 0 ≤ t < reach(X), 1+tκi ≥
0 and thus the coefficient in front of ti−1 integrates over Nor(X) to iVd−i(X)ωi for any 1 ≤
i ≤ d. The inequality of Equation (6.12) comes from the elementary fact that |1+tx|√

1+x2 ≤
√

1 + t2

for any t, x ∈ R.
□

6.2.5 Properties of curvature measures

Proposition 6.16 (Some properties of the curvature measures). Let X be a compact set of Rd
admitting a normal bundle.

(1) For any λ > 0, Ci(λX, λU) = λiCi(X,U);
(2) Ci(X,U) = Ci(g(X), g(U)) for any 0 ≤ i ≤ d and any isometry g : Rd → Rd;
(3) When X is a hypersurface, Vd−1(X) = Hd−1(∂X). When X is a domain, Vd−1(X) =

1
2Hd−1(∂X).

(4) Let ι : Rd → Rm be an isometry. Then the intrinsic volumes of ι(X) are the same as
those of X .

Proof.
Items (1) and (2) are immediate consequences of the change of variable formula, respectively
with λ-dilatation and the isometry g. Item (3) comes from the explicit representation of the cur-
vature measures, as Vd−1(X) = 1

ω1
Hd−1(∂X) when X is C1,1. This extends to domains with

positive reach or complementary regular set by the convergence of Steiner’s formula applied to
offset/counter offsets when t → 0. The other assertion of (3) is a consequence of the soon-to-be
introduced additivity of the curvature measures, seeing a hypersurface as the intersection of two
domains. Finally, item (4) is the result of a more technical computation. By isometry invariance,
we can take ι : Rd → Rm to be the identity on the first d coordinates and zero on the others.
From the co-area formula induced by the map Rd × Rm−d → Rm−d, (x, y) ↦→ y, we have

Vol(ι(X)t) =
∫︂

||y||≤t
Vol

(︃
X

√
t2−||y||2

)︃
dHm−d(y)

=
∫︂

||y||≤t

d∑︂
i=0

Vd−i(X)ωiti
(︄

1 − ||y||2

t2

)︄i/2

dHm−d(y).
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Now consider the bijective change of variables B(0, t) → [0, 1] × Sm−d−1, y ↦→
(︂

||y||
t ,

y
||y||

)︂
.

Its inverse is the map (r, u) ↦→ tru, which has Jacobian tm−drm−d−1. The Co-area formula
(Theorem 2.12) thus yields:

Vol(ι(X)t) =
d∑︂
i=0

Vd−i(X)(m− d)ωm−dωit
i+m−d

∫︂ 1

0
(1 − r2)i/2rm−d−1 dr

=
d∑︂
i=0

Vd−i(X)(m− d)ωm−dωit
i+m−dB

(︃
i+ 1

2 ,
m− d

2

)︃

where B is the Beta function. Linking the closed form ωi = πi/2

Γ(i/2+1) with the expression of B
as a function of Euler’s Gamma function (B(x, y)Γ(x+ y) = Γ(x)Γ(y)) yields the following.

Vol(ι(X)t) =
d∑︂
i=0

tm−d+iVd−i(X)ωm−d+i. (6.13)

□

Among the class of sets with positive reach, the curvature measures enjoy a combinatorial
property called additivity.

Proposition 6.17 (Additivity of the curvature measures of sets with positive reach [Fed59, 5.16]).
LetA,B be two compact subsets of Rd with positive reach such thatA∪B also has positive reach.
Then so does A ∩B, and we have for every 0 ≤ i ≤ d:

Ci(A, ·) + Ci(B, ·) = Ci(A ∪B, ·) + Ci(A ∩B, ·).

Figure 6.2 – Inclusion-exclusion principle on a cross. Remark that the central point has negative
curvatures.

This property is crucial in extending the definition of curvature measures to union of sets with
positive reach, as one expects the inclusion-exclusion principle to hold. In fact, along isometry
invariance and Hausdorff continuity over the class K of compact convex sets of Rd, this property
characterizes the intrinsic volumes.

Theorem 6.18 (Hadwiger’s Theorem). Let f : K → R be such that:
— f is isometry-invariant, that is, for every isometry g of Rd, f ◦ g = f ;
— f is additive, i.e., if A,B and A ∪B are in K, then

f(A) + f(B) = f(A ∪B) + f(A ∩B); (6.14)



6.3 – Connections to Morse theory 87

— f is continuous for the Hausdorff topology;
Then f is a linear combination of the intrinsic volume functionals on K.

As a consequence, one can construct integral geometric formulas which are homogeneous,
real valued functionals of compact convex subsets of Rd satisfying the assumptions of Hadwiger’s
theorem. These are obtained as integral over invariant measures of well-chosen sets, as defined
below.

Definition 6.19 (Invariant measure over isometries and affine subspaces). Let SO(d) be the group
of affine isometries of Rd. It is isomorphic to SO(d) × Rd via α : (u, v) ↦→ τv ◦ u, where
τv : x ↦→ x + v is the translation by v. There is a unique measure µ on SO(d), called the Haar
measure, such that µ(u(U)) = µ(U) for any Borelian of SO(d), and µ(SO(d)) = 1. We equip
SO(d) with the image measure of µ⊗ Hd by α. This measure is SO(d) invariant.

In the same vein, letAd,j be the sets of affine j-dimensional subspaces of Rd. Such a subspace
a unique representation as V + z where V is j-dimensional subspace of Rd and z in V ⊥. Letting
νdj be the sole O(d)-invariant measure on the set G(d, j) of j-dimensional subspaces of Rd with
measure 1. We equip Ad,j with the image of the product measure νdj ⊗ Hd−j .

The two main kinds of integral geometric formulas are given by the following two proposi-
tions. By invariance of the respective measure of integration, it is straightforward to see that these
formulas satisfy the assumptions of Hadwiger’s theorem as functions of A and B, except the con-
tinuity in the Hausdorff distance. This continuity is a consequence of Lebesgue’s integration the-
orem and measure geometric considerations, which can be found in [RZ19, Chapter 6]. The con-
stants of the functionals can be explicitly computed by consideringA,B to be two balls of varying
radii. Their exact values are cd,r,s = γ(r)γ(s)/γ(r + s− d)γ(d), where γ : z ↦→ Γ((z + 1)/2) is
obtained from Euler’s Gamma function.

Proposition 6.20 (Principal Kinematic Formula for convex sets). Let A,B be compact convex
subsets of Rd. Then there are constants cd,r,s ∈ R such that:∫︂

g∈SO(d)
Vk(A ∩ gB) dg =

∑︂
r+s=d+k
0≤r,s≤d

cd,r,sVr(A)Vs(B). (6.15)

Proposition 6.21 (Crofton’s formula). Let A be a compact convex subset of Rd. Then we have∫︂
Ad,j

Vk(A ∩ E) dE = cd,d+k−j,jVd+k−j(X). (6.16)

As V0 is the Euler-characteristic by the Gauss-Bonnet theorem, these two formulas relate topo-
logical quantities to geometrical ones. Further taking B to be a ball of radius t in the principal
kinematic formula, we recover Steiner’s formula thanks to the local contractability of any set with
positive reach Proposition 3.3. We will see in Chapter 7 that this very case can be combined with
the persistent homology framework.

6.3 Connections to Morse theory

In this section, we present how the class of sets admitting a normal bundle can be linked to
previous concepts found in the literature of curvatures of subsets of Euclidean spaces. Let ϕX,r be
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the following map:

ϕX,r :=
{︄

Nor(X) × (0, r) → Rd
(z, n, t) ↦→ z + nt

We write ϕX for ϕX,∞.

6.3.1 Almost all linear forms and distance to a point functions are Morse

Definition 6.22 (Linear forms and distance-to-a-point functions on Rd). For any ν ∈ Sd−1,
let hν : x ↦→ ⟨x, ν⟩ be the linear form associated to ν. We denote by Hν,t the half-space
h−1
ν (−∞, t] = {x | ⟨x, ν⟩ ≤ t}.

For any x ∈ Rd, we let dx : y ↦→ ||x− y|| be the distance to x. Its sublevel sets are the balls
centered around x. The family (dx)x∈Rd forms the class of distance to a points functions.

It is sometimes more convenient to work with d2
x as it is more regular. Indeed, the map d2

x is
C∞ for all x ∈ R, with gradient ∇d2

x(y) = 2(y − x) and Hessian Hyd
2
x = 2 Id.

Theorem 6.23 (Almost all linear forms are Morse). Let X be a set admitting a normal bundle.
Then for Hd−1-almost all ν in Sd−1, the map (hν)|X is Morse. Moreover, if y is a critical point
of the Morse function (hν)|X , then the dimension of the cell added around y is the number of
negative principal curvatures of the pair (y,−ν) in Nor(X).

Proof.

A point y in X is critical for (hν)|X if and only if −ν ∈ Nor(X, y). Since almost all pairs
of Nor(X) are regular, the set πreg consisting of the ν in Sd−1 such that the fiber π−1

1 (ν) with
π1 : Nor(X) → Sd−1 contains only regular pairs has full Hd−1-measure. Now let y ∈ πref be
a critical point of (hν)|X . The Hessian of (hν)|X at y is exactly the second fundamental form at
(y,−ν), whose index is the number of finite negative curvatures. We obtain the desired result
on the dimension of the cell glued around y by adding the eventual number of negative infinite
curvatures in case X is complementary regular.
Now there remains to prove that such a second fundamental form is non-degenerate for almost
all ν in πreg. Remark that Jd−1π1| Nor(X)(y,−ν) =

∏︁d−1
i=1

|ki|√
1+k2

i

is zero if and only if the

second fundamental form is degenerate. Let DegenX be the set of regular pairs (y,−ν) in
Nor(X) such that the HessianHy(h−ν)|X is degenerate. By the weak version of Sard’s theorem
(Theorem 2.13), Hd−1(π1(DegenX)) = 0. The set of ν such that (h−ν)|X is Morse is exactly
πreg \ π1(DegenX), which has full Hd−1-measure.

□

We now turn our attention to distance to a point functions. The definition of Morse functions
in Chapter 4 is not adapted to distance to a point function. Indeed, remark that d2

x : y ↦→ ||x− y||2
has vanishing gradient at y = x although the point x plays the role of a critical point of (d2

x)|X
when X is a complementary regular set containing x. To deal with this class of maps, we adapt
(for this class only!) the definition of a Morse function.

Definition 6.24 (Morse distance to a point function). Let X admit a normal bundle. We say that
d2
x is a Morse function when either:
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— x /∈ X and (d2
x)|X is Morse in the sense of Chapter 4;

— x ∈ X and every critical point of (d2
x)|X different from x is non-degenerate.

With this definition, distance to a point functions are indeed almost-all Morse.

Theorem 6.25 (Distance to a point functions & Morse theory). Let X be a set admitting a normal
bundle. Then (d2

x)|X is a Morse function for Hd-almost all x in Rd.
When (d2

x)|X is a Morse function, the dimension of the cell added around a critical point y
in the filtration (X ∩ B(x, t))t∈R is the number of principal curvatures of X at (y, x−y

||x−y||) lower
than − 1

||x−y|| . Furthermore, the number of homological events of the filtration (X ∩ B(x, t))t∈R

with critical value strictly less than r ∈ R+ is 1X(x) + Card(ϕ−1
X,r(x)).

Proof.

A point y ̸= x is critical for (d2
x)|X when n := x−y

||x−y|| belongs to Nor(X, y), i.e., x = y + nt

for some (y, n) in Nor(X) and t = ||x− y||. The map (d2
x)|X is Morse if and only if ϕ−1

X,∞
contains only regular pairs (y, n) in the first two coordinates, with Hy(d2

x)|X non-degenerate.
Let UnregX be the set of non-regular pairs of Nor(X) and let x belong to Rd \ ϕX(UnregX ×
R+). For any (y, n, t) in ϕ−1

X , let (bi)1≤i≤d−1 (resp. (ki)1≤i≤d−1) be principal directions (resp.
associated principal curvatures) at (y, n), such that they have associated finite curvatures if and
only if 1 ≤ i ≤ p. The restricted Hessian on π0(Tan(Nor(X), (y, n)) = Vect((bi)1≤i≤p)
writes

Hy(d2
x)|X(bi, bj) = Hy(d2

x)(bi, bj) + t IIy,n(bi, bj)

=
{︄

2(1 + tki) if i = j;
0 otherwise.

□

When it is non-degenerate, the index of this bilinear form is Card
{︂

1 ≤ i ≤ p | ki ≤ −1
t

}︂
and

the dimension of the cell glued around y is that plus the eventual negative infinite curvatures.
Now the previous Hessian is non-degenerate if and only if the product

∏︂
1≤i≤d−1

|1 + tki|√︂
1 + k2

i

= JdϕX(y, n, t)

vanishes. Letting DegenX be the set consisting of triplets (y, n, t) where (y, n) is a regular pair
and t is such that the previous product is zero, by the weak Sard’s theorem (Theorem 2.13) we
have Hd(ϕX(DegenX)) = 0. In the end, the set

Rd \
(︂
X ∪ ϕX

(︂
UnregX × R+

)︂
∪ ϕX (DegenX)

)︂
has full Lebesgue measure in Rd \X and contains only points x such points (d2

x)|X is Morse.
Since any set admitting a normal bundle is locally contractible, when x ∈ X , the sets X ∩

B(x, t) have the homotopy type of a point when t is small enough or zero, and there is only one
topological change of the filtration (X ∩B(x, t))t∈R happening at t = 0. The remaining changes
happen as per usual Morse theory as long as x does not belong to ϕX

(︁
UnregX × R+ ∪ DegenX

)︁
which has Hd-measure zero.
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6.3.2 Curvatures and Morse theory

Let X be a set admitting a normal bundle. We saw in Chapter 4 that the normal bundle was
closely related to the topology of the sublevel sets of Morse functions on X . In particular, recall
that the maps hν : x ↦→ ⟨·, ν⟩ restricted to X are Morse for Hd−1-almost every ν in Sd−1, and
that y ∈ X is critical for hν when (y,−ν) ∈ Nor(X). Analogously, the squared distance to a
point maps d2

x = ||x− ·||2 restricted to X are Morse for Hd-almost every x in Rd. A point y ∈ X
distinct from x is critical for d2

X when (y, x−y
||x−y||) ∈ Nor(X). Inspired by the ideas of Integral

geometry for tame sets [BK00], we define the index functions of linear forms and distance to a
points functions as follows.

Definition 6.26 (Index of particular Morse functions). Let X ⊂ Rd be a set admitting a normal
bundle, ν ∈ Sd−1 and x ∈ Rd. Assume that hν restricted to X is a Morse function and let y be a
critical point of hν for a certain ν ∈ Sd−1. The index of hν at a point y is:

α(y, ν) :=
{︄

(−1)λ(y,hν) if y is a critical point of hν ,
0 else.

(6.17)

where λ(y, ν) is the dimension of the cell added around y in the sublevel set filtration (X ∩
Hν,t)t∈R.

Similarly, assume that d2
x restricted to X is a Morse function. The index of d2

x at a point y is:

g(y, x) :=

⎧⎪⎨⎪⎩
1 if y = x;

(−1)λ(y,d2
x) if y ̸= x is a critical point of d2

x;
0 else.

(6.18)

where λ(y, d2
x) is the dimension of the cell added around y in the sublevel set filtration (X ∩

B(X, t))t∈R.

The indices of these two families of functions are pertinent for our study. We begin by show-
ing that these families are Morse almost everywhere. Using the co-area formula, one infers the
following.

Proposition 6.27 (Curvature measure C0 from indices of linear forms). Let X be a set admitting
a normal bundle. Then

C0(X,U) = 1
dωd

∫︂
Sd−1

⎛⎝∑︂
y∈U

α(y, ν)

⎞⎠dHd−1(ν). (6.19)

Proof of Proposition 6.27.

Let π1 : Nor(X) → Sd−1, (x, n) ↦→ n be the projection onto the normal coordinate. When
(y, ν) is regular, one infers from the structure of tangent spaces that

Jd−1π1(y, ν) =

⃓⃓⃓⃓
⃓⃓d−1∏︂
i=1

ki√︂
1 + k2

i

⃓⃓⃓⃓
⃓⃓ .
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For almost every (y, ν) in Nor(X), the number of negative principal curvatures coincides with
the index α(y, ν). Using the Co-area formula on the explicit representation of C0, one has

dωdC0(X,U) =
∫︂

Nor(X,U)

d−1∏︂
i=1

ki√︂
1 + k2

i

dHd−1(x, n)

=
∫︂

Nor(X,U)
α(y, n)Jd−1π1(y, n) dHd−1(x, n)

=
∫︂
Sd−1

⎛⎜⎝ ∑︂
π−1

2 (n)∩U

α(x, n)

⎞⎟⎠ dHd−1(n).

□

In particular, this yields the famous Gauss-Bonnet theorem.

Corollary 6.28 (Gauss-Bonnet theorem). Let X be a complementary regular set. Then V0(X) =
χ(X).

Proof.

Let U = X in the previous formula Proposition 6.27. As X is compact, if hν is Morse the
sum

∑︁
x∈π−1

2 (n) α(x, n) is finite and equals the Euler characteristic of X . As this is the case for

Hd−1-almost all ν in Sd−1, we have:

V0(X) = Hd−1(Sd−1)
dωd

χ(X) = χ(X).

□

Using similar methods, we show that the indices g(x, y) determine the curvature measure of
X .

Theorem 6.29 (Curvatures measure and index function g). Let X ⊂ Rd be a set admitting a
normal bundle and U be a Borelian subset of Rd. For any 0 ≤ r < ∞, let

ΛU (r) :=
∫︂
x∈Rd

(︂ ∑︂
y∈U

||x−y||≤r

g(y, x)
)︂

dx. (6.20)

Then ΛU is the Steiner polynomial localized at U , i.e.,

ΛU (r) =
d∑︂
i=0

ωir
iCd−i(X,U). (6.21)

Proof.

Let ϕ : Nor(X) × [0, r], (z, n, t) ↦→ z + nt and ψ(z, n, t) = (−1)m(z,n,t), where at a regular
pair (z, n), m(z, n, t) is the number of principal curvatures at (z, n) smaller than −1

t , so that
ψ(z, n, t) is the sign of the product of (1 + tki). At a regular pair (z, n), for any t ∈ (0, r), the
Jacobian of ϕ is

Jdϕ(z, n, t) =
d−1∏︂
i=1

|1 + tki|√︂
1 + k2

i

. (6.22)
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On the one hand, remark that ψ(z, n, t)Jdϕ(z, n, t) =
∏︁d−1
i=1

1+tki√
1+k2

i

. Thus, we end up with the

same polynomial as in the proof of the explicit representation of the curvature measures, without
the constant coefficient:∫︂

Nor(X,U)×(0,r)
ψ(z, n, t)Jdϕ(z, n, t) dHd−1(z, n) dt =

d∑︂
i=1

ωir
iCd−i(X,U) (6.23)

On the other hand, letting ϕX,U,r be the restriction of ϕX,r to Nor(X,U) × (0, r), the co-area
formula yields

∫︂
Nor(X,U)×[0,r]

ψJdϕX dHd =
∫︂
Rd

⎛⎜⎝ ∑︂
v∈ϕ−1

U (x)

ψ(v)

⎞⎟⎠dx. (6.24)

When (d2
x)|X is Morse, the inside sum ranges over (z, n, t) in Nor(X,U) × (0, r) such that

x = z + nt, i.e., over critical points y at distance to x in [0, r] with normal n = x−y
||x−y|| . As a

consequence, Hd-almost everywhere in x one has:∑︂
v∈ϕ−1

X,r(x)

ψ(v) =
∑︂

y∈U\{x}
||x−y||≤r

g(y, x).

The desired equality is obtained by allowing y = x in the inside sum, which adds Vol(X,U) =
Cd(X,U) to the quantity of Equation (6.23).

□

Remark that for a fixed r > 0, when d2
x restricted to X is Morse and r is not a critical value

of d2
x (which is the case Hd-almost everywhere in x), the Euler characteristic of X ∩ B(x, r) is

the sum of the indices of d2
x of critical points within B(x, r). Along Theorem 6.29, this yields the

following particular case of the kinematic formula.

Corollary 6.30 (Particular case of the Principal Kinematic Formula). Let X be a set admitting a
normal bundle and let 0 < r < ∞. Then we have∫︂

x∈Rd
χ(X ∩B(x, r)) dx =

d−1∑︂
i=0

ωir
iVd−i(X). (6.25)

6.4 The theory of normal cycles

In this section, we compare the properties of the curvatures of complementary regular sets
to the literature on curvatures of subsets of Euclidean spaces. The concept of normal cycle has
been key in the study of curvatures of subsets or Rd since its first definition in [Win82, Zä86].
It consists in a (d − 1)-current NX with support in X × Sd−1 associated to each "reasonably
geometric" subset X of Rd. As this section is not necessary to obtain the final inference result on
the intrinsic volumes, we do not include a full introduction to the concept of currents, which are
dual to smooth differential forms just as distributions are duals to smooth, real-valued maps. We
refer the reader to [Fed69, Chapter 4] or [RZ19, 1.3] for an introduction to the concept of currents.
Nevertheless, basic currents terminology can be found in Appendix A.
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Normal cycles are currents containing all the previously defined informations about the curva-
tures of a set. We will see for instance that every curvature measure can be retrieved as the normal
cycle against particular differential forms. Using the terminology of currents allows to represent
in concise and general ways some results about the curvatures.

6.4.1 Axiomatic definition of the normal cycle of a compact subset of Rd

Definition 6.31 (Legendrian currents). A current T on Rd × Rd is said to be a Legendrian cycle
when:

— ∂T = 0 (T is a cycle);
— T α = 0 where α is the canonical contact form with ⟨(u, v), α(x, n)⟩ = ⟨v, n⟩;
— T is a locally integral current, i.e., there exists WT is a (d − 1) rectifiable subset of Rd ×

Sd−1 a Hd−1-integrable integer valued function iT on WT and a Hd−1-integrable field
of simple unit covectors aT on WT such that for any differential form ϕ with compact
support, we have:

T (ψ) =
∫︂
WT

iT (x, n) ⟨aT (x, n), ψ(x, n)⟩ dHd−1(x, n). (6.26)

From the two first conditions, we have that T ω = 0, where ω = dα is the canonical
symplectic form on Rd × Rd. In fact, T ω being zero summarizes the structure of principal
directions and curvatures as explicited by the following theorem about the covector field aT [RZ19,
Theorem 9.2].

Proposition 6.32 (Structure of tangent spaces of Legendrian currents). If T is a Legendrian cur-
rent, then for Hd−1-almost all (x, n) in WT , the tangent cones Tan(WT , (x, n)) are (d − 1)-
vector spaces represented by aT . Furthermore, there exist unit vectors (bi)1≤i≤d−1 in Rd and
(ki)1≤i≤d−1 in R ∪ {∞} such that the following vectors

ai(x, n) =

⎛⎝ 1√︂
1 + k2

i

bi,
ki√︂

1 + k2
i

bi

⎞⎠
form an orthonormal basis of Tan(WT , (x, n)).

Fu [Fu89b] proved a unicity theorem for normal cycles. Indeed, he showed that establishing
the validity of the Gauss-Bonnet theorem for almost-all intersection with half-spaces as a principle
was sufficient in characterizing the curvatures of a compact subset of Rd.

Definition 6.33 (Normal cycles). A compact set X in Rd is said to admit a normal cycle when
there exists a (d− 1)-Legendrian cycle NX on Rd × Sd−1 such that:

— The support WX of NX is compact;
— For Hd almost all (ν, t) in Sd−1 × R,∑︂

x,⟨x,ν⟩≤t
(−1)λ(x,−ν)iX(x,−ν) = χ(X ∩Hν,t). (6.27)

where λ(x,−ν) is the number of negative principal curvatures at (x,−ν)

From this definition and the additivity of the Euler characteristic, we obtain the inclusion-
exclusion principle over normal cycles:
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Proposition 6.34 (Additivity of the normal cycle). Let X,Y be two compact subsets of Rd. If
three among X,Y,X ∪ Y,X ∩ Y admit a normal cycle, then so does the fourth, and we have

NX +NY = NX∪Y +NX∩Y . (6.28)

Remark 6.35 – The left-hand side quantity of Equation (6.27) can be expressed by classical oper-
ations on currents plus the so-called slicing operateor. Indeed, almost everywhere, we have:∑︂

x,⟨x,ν⟩≤t
(−1)λ(x,−ν)iX(x,−ν) = (Λ#NX , π0,−ν)(1(−∞,t])

with Λ : (x, ν) ↦→ (ν, ⟨x, ν⟩).
The representation as a sum has a topological interpretation : if the map hν is Morse, then the

equality
∑︁
x,⟨x,ν⟩≤t(−1)λ(x,−ν)iX(x,−ν) = χ(X ∩ Hν,t) states that the Euler characteristics of

the sublevel sets hν(−∞, t] are the sum of indices of the critical points of hν . The condition of
eq. (6.27) can be seen as measure theoretical generalization of this fact without the need for the
maps hν to be Morse for almost every ν ∈ Sd−1.

Definition 6.36 (Curvature measures & normal cycles). Let ϕk be the differential forms on Rd ×
Sd−1 defined by

⟨a1 ∧ · · · ∧ ad−1, ϕk(x, n)⟩ := 1
(d− k)ωd−k

∑︂
j1+···+jd−1=d−k−1

ji∈{0,1}

det(πj1(a1), . . . , πjd−1(ad−1), n).

(6.29)
The curvature measures (Ck(X, ·))0≤i≤d−1 of a compact set X ⊂ Rd admitting a normal cycle
are defined by:

Ck(X,U) := NX(ϕk 1U×Sd−1). (6.30)

Remark 6.37 – As opposed to most other works in the literature, which constructed the curvatures
measures or normal cycles of ever broader classes of sets either explicitly or as the consistent
limits of the curvatures of more regular objects, the axiomatic definition constrains the classes
of sets which can admit a normal cycle. For instance, it is hopeless to build the normal cycle
of compact, fractal-like objects. Indeed, the Euler characteristic of such a set intersected with
half-planes may not be well-defined, as its Betti numbers might be infinite.

Moreover, the axiomatic definition does not cover the normal cycle of non-compact sets, al-
though we will see that their definition for e.g. the class of sets with positive reach is exactly the
same as in the compact case. This is due to the fact that the Gauss-Bonnet theorem fails for non-
compact set. For instance, the 0-intrinsic volume of the complement set of a ball in R2 - whose
reach is positive - is −1, whereas its Euler characteristic is 0.

6.4.2 Normal cycles of sets admitting a normal bundle

In this subsection, we give an explicit construction of the normal cycle of sets admitting a
normal cycle.

Definition 6.38 (Normal cycles of sets admitting a normal bundle). Let X be a set admitting a
normal bundle. For any regular pair (x, n) in Nor(X), let bi (resp. ki) be principal directions (resp.
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associated principal curvatures) of X at (x, n) such that the family b1, . . . , bd−1, n is positively
oriented. When X is a complementary regular set, we let infinite curvatures to be −∞. We let aX
be the Hd−1-measurable vector field of (d− 1)-covectors on Nor(X) defined by:

a−
X(x, n) :=

d−1⋀︂
i=1

⎛⎝ 1√︂
1 + k2

i

bi,
ki√︂

1 + k2
i

bi

⎞⎠ . (6.31)

The normal cycle NX of a complementary regular set X is the (d− 1)-dimensional current on
Rd × Rd with support in Rd × Sd−1, defined by

NX(ψ) :=
∫︂

Nor(X)

⟨︂
a−
X(x, n), ψ(x, n)

⟩︂
dHd−1(x, n). (6.32)

Remark 6.39 – In Proposition 6.32 principal curvatures and directions were defined from the nor-
mal cycleNX , whereas Definition 6.38 did the opposite. In particular, whenX is a complementary
regular set, the definition of Proposition 6.32 only allows for positive infinite curvatures. With this
convention, the previous factors of a−

X with infinite curvature become (0, bi) instead of (0,−bi),
yielding a new vector field aX = iXa

−
X , where iX is 1 if the number of infinite curvatures at (x, n)

is even and −1 else. Thus the definition of NX is consistent, with

NX(ψ) =
∫︂

Nor(X)
iX(x, n) ⟨aX(x, n), ψ(x, n)⟩ dHd−1(x, n). (6.33)

When X is complementary regular, its complement set ¬X is not compact. Yet, its boundary
is compact, and we can defineN¬X by integration on its boundary just as in Definition 6.38 thanks
to the structure of Nor(¬X). The fact that Nor(X) = ρ(Nor(¬X)) translates into the following
relation between normal cycles.

Proposition 6.40 (Normal cycle of complementary regular sets). Let ρ : (x, n) ↦→ (x,−n) and
let X ⊂ Rd be a complementary regular set. Then we have

N¬X = −ρ♯NX . (6.34)

Remark that the equalities Ck(X, ·) = (−1)d−k−1Ck(¬X, ·) for any 0 ≤ k ≤ d − 1 can be
seen as consequences of the fact that ρ∗ϕk(x, n) = (−1)d−kϕk(x,−n).

Proposition 6.41 (NX is the normal cycle of X in the sense of Fu). Let X be a compact subset
of Rd admitting a normal bundle. Then the current NX defined in Definition 6.38 is the normal
cycle of X in the sense of Definition 6.33.

Proof.

IfX is a compact C1,1-domain,NX represent the integration over a manifold without boundary,
which implies that ∂NX = 0. The correspondence between Nor(X) and Nor(Xεr) where
ε = 1 (resp. −1) if X is of positive reach (resp. is complementary regular) yields, when
r < reach(X) (resp. < reach ¬X):

NX = (f εr)#(NXεr )

with f t = (z, n) ↦→ (z + tn, n). The right-hand side is the normal cycle of a C1,1 domain.
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Recall that α is the 1-form defined by α(x, n)(u, v) = ⟨n, v⟩. Let (x, n) be a regular pair of
Nor(X). Since aX(x, n) =

⋀︁d−1
i=1 ai(x, n) with the two components of ai(x, n) ∈ Rd × Rd

orthogonal to n, we have

⟨aX(x, n), α(x, n) ∧ ψ(x, n)⟩ =
d−1∑︂
i=1

(−1)iα(ai(x, n))
⟨︂
aiX(x, n), ψ(x, n)

⟩︂
= 0.

for some (d− 2)-covectors aiX(x, n). Integrating over Nor(X) yields NX(α ∧ ψ) = 0.
Now there remains to prove that

∑︁
x,⟨x,ν⟩≤t(−1)λ(x,−ν)iX(x,−ν) = χ(X∩Hν,t) for Hd-almost

everywhere in Sd−1 × R. In our case, iX(x, n) = 1 in Nor(X). By Theorem 6.23, almost
everywhere in Sd−1 the linear form hν is Morse, and for any regular value t pf hν , χ(X ∩Hν,t)
is the sum of the index (−1)λ(x,−ν) of the critical points x with ⟨x, ν⟩ ≤ t. Since there are
finitely many critical points, this equality is true Hd-almost everywhere in ν, t.

□

6.4.3 Comparison with other classes of sets admitting a normal cycle

In the geometric measure theory framework, normal cycles were first defined by Wintgen in
[Win82] for submanifolds of Rd and by Zähle in [Zä86] for sets with positive reach. The extension
to complementary regular sets presented in this chapter is a simple consequence of the fact that
almost all linear forms are Morse for the generalized Morse theory presented in Chapter 4 and the
fact that Nor(X) = ρ(Nor(¬X)) by putting NX = −ρ#N¬X . We compare this construction to
some other constructions of normal cycles or curvature measures found in the litterature.

Normal cycles of stratified sets In [BK00], the authors defined the curvature measures of any
stratified set as the coefficients of the polynomial ΛU , just as in Theorem 6.29, using stratified
Morse theory. Although complementary regular sets are not necessarily stratified - and recipro-
cally - we adapted the ideas of [BK00] to our context thanks to the Morse theory for complemen-
tary regular sets developed in Chapter 4. The class of complementary regular sets is morse simple,
as the index of Morse functions at a critical points are either 1 or −1. In particular, when not
vanishing, the index function iX of the normal cycle of a complementary regular set always takes
value 1 or −1.

Lipschitz domains In [RZ03], Rataj and Zähle obtained that all elements of the class of Lip-
schitz domains with locally bounded inner curvatures (LBIC), which contains complementary
regular sets, admitted a normal cycle. They did so defining NX as the limit in the flat norm of
the normal cycle of the eroded sets X−ε, and showed that it was the Euler characteristic condition
of Definition 6.33 was verified by NX by local retraction method. In [RZ05], this result was ex-
tended to Lipschitz submanifold of lower dimensions, replacing the normal bundle Nor(X) with
NX :=

⋃︁
x∈∂X{x} ×

(︂
∂*dX(x) ∩ Sd−1

)︂
.

Locally WDC-sets Another class of sets for which the existence of a normal cycle is guaranteed
is the class of sets which are locally sublevel sets of maps which can be written as the difference
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of two convex functions at weak regular value. Such sets are called WDC sets. The class of sets
admitting a normal bundle is contained in the class of WDC sets.

Proposition 6.42 (Sets admitting a normal bundle are WDC). Every set in Rd admitting a normal
bundle is WDC.

Proof.

If reach(X) > 0, then dX is semi-convex on a neighborhood of X by Proposition 3.4 and 0
is a weak regular value of dX . If X is complementary regular set, then X is sublevel set of a
semi-concave function at a regular value by Section 3.4.2. Moreover, both semi-concave and
semi-convex maps are obviously dc by definition.

□

In particular, this implies that the principal kinematic formula does apply to the class of sets
admitting a normal bundle:

Theorem 6.43 (Principal Kinematic Formula for sets admitting a normal bundle). Let A,B ⊂ Rd
be sets admitting a normal bundle, and U, V be two Borelians of Rd. Then for every 0 ≤ i ≤ d−1
we have: ∫︂

g∈SO(d)
Ci(A ∩ gB,U ∩ gV ) dg =

∑︂
r+s=i+d

cd,r,sCr(A,U)Cs(B, V ). (6.35)





CHAPTER 7
Persistent geometry

We develop a new method to estimate the area, and more generally the intrinsic volumes,
of a compact subset X of Rd from a set Y that is close in the Hausdorff distance. This
estimator enjoys a linear rate of convergence as a function of the Hausdorff distance
under mild regularity conditions onX . Our approach combines tools from both geomet-
ric measure theory and persistent homology, extending the noise filtering properties of
persistent homology from the realm of topology to geometry. Along the way, we obtain a
stability result for intrinsic volumes.
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7.1 Introduction

7.1.1 Previous work

Previous results focused mostly on the estimation of the area Vd−1(X). One approach is to es-
timate the area by the area of a piecewise linear reconstruction of the data. For example, the tangent
complex triangulation [BG14] guarantees that this estimator converges to Vd−1(X) at a linear rate
in the Hausdorff distance dH(X,Y ) when X is a smooth submanifold of Rd and Y a noise-free
sample. Using Crofton’s formula, [ACF22] builds an estimator for the surface area Hd−1(∂X)
from a point cloud sample Y and obtains a square-root rate of convergence O(dH(X,Y )1/2) in
the general case. Other works have focused on the retrieval of curvatures measures, which are
local, more informative versions of the intrinsic volumes. A convergence rate of dH(X,Y )1/2 for
the curvature measures was obtained in [CCSM10] under the condition dH(X,Y ) ≤ reach(X).
Chazal et al. [CCSLT09] obtain the convergence of the curvature measures of Y r to that of Xr at
a square root rate, for any fixed r > 0.

Linear convergence rates were obtained for the estimation of the first intrinsic volume using
persistent homology of height functions and Crofton’s formula. Authors in [CSE07] showed a
linear rate of convergence of V1(Y ) to V1(X) with respect to the Fréchet distance between X and
Y when they are both compact surfaces of R3 or both curves in Rd assuming their total absolute
curvature is bounded. Building on these ideas, Edelsbrunner et al. [EP16] obtained more recently a
linear rate of convergence for the first intrinsic volume of voxelizations of smooth sets, in addition
to showing the convergence of all intrinsic volumes of spheres voxelized with ever-increasing
precision.

Another line of research has focused on non-deterministic geometric inference from uniform
samples of convex sets. Notably, the authors of [BHH08, Rei04] worked with convex sets with
a Ck boundary, where k ≥ 2. The expected intrinsic volumes of the convex hull of the sample
were shown to converge each to the ideal intrinsic volume at a rate of CXn−2/(d+1) where n is
the number of sample points and CX a constant depending on X . It was also proven that this
result does not hold with a mere C1 boundary condition, suggesting that finding an estimator that
is robust to the lack of regularity is difficult.

7.1.2 Contributions

We define quantities V ε
i (Y ) depending on a parameter ε, that approach Vi(X) at a linear rate

in dH(X,Y ) assuming only mild regularity conditions onX . This rate is easily seen to be optimal.
To the best of our knowledge, these are the first estimators that come with theoretical guarantees
beyond sets with positive reach. Even for the basic problem of estimating the boundary area of
three-dimensional object with reach zero, we are not aware of any other provably correct method.

Theorem (Main Results). Let X,Y be two compact sets of Rd and let µ ∈ (0, 1], ε > 0 be such
that dH(X,Y ) ≤ ε ≤ 1

4 reachµ(X). Then we have:⃓⃓⃓
V ε
i (Y ) − Vi(X2ε)

⃓⃓⃓
≤ CdK(X2ε) ε

µ
, (7.1)

where Cd is a constant depending on d, K(X2ε) := Hd(X2ε) + Hd−1(Nor(X2ε)) and Nor(X2ε)
is the unit normal bundle of X2ε.
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Further assuming that reach(X) > 0, we prove a linear rate of convergence for the intrinsic
volumes of offsets: ⃓⃓⃓

Vi(X) − Vi(X2ε)
⃓⃓⃓

≤ Cd
(︂
K(X) +K(X2ε)

)︂ ε
µ
. (7.2)

It is worth noting that the second claim holds even when reach(X) is arbitrarily smaller than
ε, a case for which, to the best of our knowledge, no quantitative convergence result between
the curvatures of X2ε and X was known. We also conjecture that this claim holds when X is
subanalytic. Taken together, the two claims above provide a way to estimate the intrinsic volumes
of an unknown shapeX with positive reach from a Hausdorff approximation Y. From this point of
view, the condition that reach(X) is positive is not restrictive since sets with positive reach form
a dense family of compact subsets for the Hausdorff distance.

A byproduct of our methods is an answer to the second open question asked by Milnor in
[Mil94]: in which sense do X and Y have to be close to guarantee that their intrinsic volumes
are close? It turns out that the existence of a C0-controlled homotopy equivalence (see [Cha83]
for a related notion) is sufficient, assuming a bound on the volume of the unit normal bundle of
both sets. More precisely, say that X and Y are (ε, δ)-homotopy equivalent if there exist two
continuous maps f : X → Y , g : Y → X such that ||f − Id||∞ ≤ ε, ||g − Id||∞ ≤ ε and such
that there exist homotopies H1 (resp. H2) between f ◦ g and IdY (resp. g ◦ f and IdX ) satisfying
||H1(t, ·) − IdY ||∞ ≤ 2δ (resp. ||H2(t, ·) − IdX ||∞ ≤ 2δ) for all t ∈ [0, 1].

Theorem 7.1 (Intrinsic volumes & (ε, δ)-homotopy equivalence). Let X and Y be two compact
subsets of Rd with positive reach. If X and Y are (ε, δ)-homotopy equivalent for ε and δ positive,
we have:

|Vi(X) − Vi(Y )| ≤ Cd max(ε, δ) (K(X) +K(Y )) . (7.3)

For our inference problem, a naive approach would be to estimate the intrinsic volumes of
X by the intrinsic volumes of small offsets of Y. However, this leads to a trade-off between the
bias induced by too large offset parameters and the spurious geometric details that come with
small offset parameters. Optimizing this trade-off yields a sublinear rate of convergence. We
use the noise-filtering properties of persistent homology to improve over this sublinear behavior
by studying the inclusion Y ε ⊂ Y 3ε instead, similar to the usual method for estimating Betti
numbers [CL05, CSEH05]. Our approach uses the principal kinematic formula from integral
geometry to express the intrinsic volumes as integrals of certain Euler characteristics. We then
define our persistent intrinsic volumes by replacing these Euler characteristics with persistent Euler
characteristics associated with the pair Y ε ⊂ Y 3ε. A stability theorem for image persistence then
allows us to prove a linear rate of convergence for our estimators.

7.2 Persistent Intrinsic Volumes

7.2.1 Definition

In this section, we define the persistent intrinsic volumes V ε,R
i (Y ), where ε,R are positive

numbers, and state our main results. Recall from Section 3.1.1 that dx : z ↦→ ||z − x|| is the
distance to a point x ∈ Rd, and from Definition 5.11 that for any pair of nested subsets A ⊂ B
of Rd, dgm(dx, A,B) is the image persistence diagram of the map dx induced by the inclusion
A ↪→ B.
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Definition 7.2 (Persistent Intrinsic Volumes). Let Y ⊂ Rd be closed, x ∈ Rd and ε ≥ 0. We let
Dε,x
Y := dgm(dx, Y ε, Y 3ε). When ε = 0, we write Dx

Y := dgm(dx|Y ).
— The persistent Steiner function QεY is defined by:

QεY (r) :=
∫︂
x∈Rd

χ(Dε,x
Y (r))dx.

— Given R > 0, the persistent Steiner polynomial is the orthogonal projection of QεY re-
stricted to [0, R] on the space of polynomials of degree at most d for the scalar product of
L2 ([0, R]).

— Writing the persistent Steiner polynomial as
∑︁d
i=0 ωiV

ε,R
d−i (Y )ri, the

rescaled coefficients (V ε,R
i (Y ))0≤i≤d are the persistent intrinsic volumes of Y .

Remark 7.3 – When Y is compact and ε is positive, one can always find a finite simplicial complex
C such that Y ε ⊂ C ⊂ Y 3ε. By Theorem 5.14, the diagrams Dε,x

Y inject into Dx
C for every x,

implying that their size is bounded by the number of simplices of C. In particular, the persistent
Steiner function is locally bounded, and persistent intrinsic volumes are well-defined without any
regularity condition on Y .

7.2.2 Bounds on Steiner polynomial

The following is an immediate consequence of Corollary 5.13 and Theorem 5.14.

Proposition 7.4 (Diagram approximation). Let X,Y be compact subsets of Rd and ε, µ > 0 be
such that dH(X,Y ) ≤ ε ≤ 1

4 reachµ(X). For all x ∈ Rd, we have:
— dB(Dε,x

Y , Dx
X2ε) ≤ 2ε

µ ;
— Dε,x

Y injects into Dx
X2ε .

We use the previous lemmas to establish a linear rate of convergence of QεY to QX2ε over
[0, R] for any positive real R.

Theorem 7.5 (Estimating the Steiner polynomial in the L1 norm). Let X,Y ⊂ Rd be compact
sets and ε, µ > 0 be such that dH(X,Y ) ≤ ε ≤ 1

4 reachµ(X). Then we have:

||QεY −QX2ε ||L1([0,R]) ≤ 4ε
µ

∫︂
Rd
NR

0 (Dx
X2ε)dx. (7.4)

Proof.

The result is an immediate consequence of Proposition 7.4 along with the second case of the
χ-averaging lemma Lemma 5.16.

□

The next lemma relates the integral term in the bound of Theorem 7.5 to the geometry of X2ε.

Lemma 7.6 (Number of critical points of dx). Let X ⊂ Rd be a compact set and ε, µ > 0 be such
that 0 < 2ε < reachµ(X). For any R > 0, define ϕX2ε,R : Nor(X2ε) × [0, R] → Rd, (y, n, t) ↦→
y + tn.
Then Hd-almost everywhere in x,

— NR
0 (Dx

X2ε) ≤ 1X2ε(x) + card ϕ−1
X2ε,R(x).
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— card ϕ−1
X2ε,R(x) is finite;

Moreover, we have: ∫︂
Rd
NR

0 (Dx
X2ε) dx ≤ Vol(X2ε) +MR(X2ε).

Proof.

The map ϕX2ε,R is Lipschitz between two rectifiable sets of dimension d, Rd and Nor(X2ε) ×
[0, R]. By the Co-area formula (Theorem 2.12), we have:∫︂

Rd
card ϕ−1

X2ε,R(x) dx =
∫︂

Nor(X2ε)×[0,R]
JdϕX2ε,R(y, n, t) dHd(y, n, t). (7.5)

and the right-hand side quantity is MR(X2ε). This yields the integral inequality from the first
point. Since ϕX2ε,R is Lipschitz, its Jacobian is bounded on the compact set Nor(X2ε) × [0, R],
the right-hand side of Equation (7.5) is finite, and thus the Cardϕ−1

X2ε,R(x) is finite almost
everywhere.
Recall that by Theorem 3.38,X2ε is a complementary regular set. By Theorem 6.25, Hd-almost
everywhere in x, the map (d2

x)|X2ε is Morse in the generalized sense. Furthermore, its set of
critical points within the ball B(x,R) of radius R centered in x is exactly ϕ−1

X2ε,R. Adding the
eventual case where x ∈ X2ε, this shows that the number of topological events in the filtration
(X2ε ∩ B(x, t))t∈R with filtration value less or equal than R is 1X2ε(x) + card ϕ−1

X2ε,R(x). In
case (d2

x)|X2ε is Morse, there is exactly one homological event per critical point (cf. Chapter 4),
and the number of bars NR

0 (Dx
X2ε) is bounded by 1X2ε(x) + card ϕ−1

X2ε,R(x).

□

7.2.3 Bounds on intrinsic volumes

We are now in position to prove our main theorems.

Theorem 7.7 (Linear convergence of the persistent intrinsic volumes). Let X,Y be compact sub-
sets of Rd and let ε, µ > 0 be such that dH(X,Y ) ≤ ε ≤ 1

4 reachµ(X). There exist constants
P (i, d) such that, for any R > 0, we have:⃓⃓⃓

V ε,R
i (Y ) − Vi(X2ε)

⃓⃓⃓
≤ εP (i, d)

µRi+1

(︂
Vol(X2ε) +MR(X2ε)

)︂
. (7.6)

Proof.

Applying Theorem 7.5 and Lemma 7.6 we obtain for any positive R:

||QεY −QX2ε ||L1([0,R]) ≤ 4ε
µ

(Vol(X2ε) +MR(X2ε)).

Let i ≤ j and let (Ln)n∈N be the Legendre polynomials on [0, 1]. We obtain after renormal-
ization and reparametrization an orthonormal basis of the polynomials of degree at most d on
[0, R] formed by the following polynomials:

PRj (X) :=

√︄
2j + 1
R

Lj

(︃
X

R

)︃
.
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The fact that ||Li||∞,[0,1] ≤ 1 yields
⃓⃓⃓⃓⃓⃓
PRj

⃓⃓⃓⃓⃓⃓
∞,[0,R]

≤
√︂

2j+1
R for any positive R.

Denoting by ci(PRj ) the i-th coefficient of PRj , we have for any i ≤ j:

⃓⃓⃓
ci(PRj )

⃓⃓⃓
= 1
Ri+

1
2

√︁
2j + 1

(︄
j

i

)︄(︄
i+ j

i

)︄

and ci(PRj ) = 0 otherwise. Now decomposing QεY in the basis PRj and taking the coefficient of
Xi yields

V ε,R
i (Y ) = 1

ωd−i

∫︂ R

0

∫︂
Rd
χ(Dε,x

Y (r))
d∑︂
j=i

PRj (r)ci(PRj ) dx dr.

Since we have ⃓⃓⃓⃓⃓⃓
PRj ci(PRj )

⃓⃓⃓⃓⃓⃓
∞,[0,R]

≤ (2j + 1)
Ri+1

(︄
j

i

)︄(︄
i+ j

i

)︄
,

we see that:

⃓⃓⃓
V ε,R
i (Y ) − Vi(X2ε)

⃓⃓⃓
≤ 1
Ri+1 ||QεY −QX2ε ||L1([0,R])

1
ωd−i

d∑︂
j=i

(2j + 1)
(︄
j

i

)︄(︄
i+ j

i

)︄
.

We now obtain the desired inequality by applying Lemma 7.6 and Theorem 7.5 and putting

P (i, d) := 4
ωd−i

d∑︂
j=i

(2j + 1)
(︄
j

i

)︄(︄
i+ j

i

)︄
.

□

Remark 7.8 – Our approach consists in bounding the L1 norm of QεY − QX2ε (Theorem 7.5 and
Lemma 7.6):

||QεY −QX2ε ||L1([0,R]) ≤ 4ε
µ

(︂
Vol(X2ε) +MR(X2ε)

)︂
and retrieving quantities that are close to the rescaled coefficients (Vi(X2ε))0≤i≤d of the polyno-
mial QX2ε from the persistent Steiner function QεY , which is in L2([0, R]) but is not a priori a
polynomial. We chose in Definition 7.2 the rescaled coefficients V ε,R

i (Y ) of its orthogonal pro-
jection on the space Rd[X] of polynomials of degree at most d. From this definition and from the
explicit formulas for Legendre polynomials (see the proof of Theorem 7.7) we obtain:⃓⃓⃓

V ε,R
i (Y ) − Vi(X2ε)

⃓⃓⃓
≤ P (i, d)

4Ri+1 ||QεY −QX2ε ||L1([0,R]) . (7.7)

Taking the i-th coefficients of orthogonal projections is one way to build linear forms ϕRi,d :
L2([0, R]) → R such that, restricted to the space Rd[X] of polynomials with degree at most
d, ϕRi,d is the map

∑︁
0≤j≤d ajX

j ↦→ ai. In fine, we defined V ε,R
i (Y ) as ϕRi,d(QεY )/ωd−i. By

Equation (7.7) the linear forms ϕRi,d are ωd−iP (i, d)/4Ri+1-Lipschitz for the L1 norm over [0, R].
The bound we infer on V ε,R

i (Y ) − Vi(X2ε) from ||QεY −QX2ε ||L1([0,R]) comes from a bound on
the Lipschitz constant of ϕRi,d obtained using Legendre polynomials. Yet, by the Hahn-Banach
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extension theorem, the best Lipschitz constant possible for a linear form ϕRi,d whose restriction to
Rd[X] is the i-th coefficient map is exactly the Lipschitz constant of (ϕRi,d)|Rd[X] which we denote
by lRi,d. When i = d ≥ 0 by classical work in optimization (e.g., [Ric64, 4.9, p. 117]), we have:

lRd,d = 4d

Rd+1 ≤ (2d+ 1)
Rd+1

(︄
2d
d

)︄

where the right-hand side is the bound on the Lipschitz constant we explicitly obtained by the
Legendre polynomials method. This shows that there exist alternate ways of defining the persistent
intrinsic volumes from the persistent Steiner function that lead to a strictly better bound than the
one in Theorem 7.7.

Theorem 7.9 (Convergence of the intrinsic volumes of an offset). Let X ⊂ Rd and µ, ε > 0 be
such that ε < 1

2 reachµ(X). If reach(X) > 0, we have:⃓⃓⃓
Vi(X) − Vi(X2ε)

⃓⃓⃓
≤ εP (i, d)

µRi+1

(︂
Vol(X) + Vol(X2ε) +MR(X) +MR(X2ε)

)︂
.

Proof.

Let x ∈ Rd and δ > 0. For any sufficiently small σ > 0, set c = 2ε−δ
µ−σ . By the µ-reach

hypothesis, there exists a continuous flow between X2ε and Xδ which is c-Lipschitz in the time
parameter thanks to ??. This yields the following commutative diagram:

H∗(X2ε
a ) H∗(X2ε

a+c) H∗(X2ε
a+2c)

H∗(Xδ
a) H∗(Xδ

a+c) H∗(Xδ
a+c)

This gives a 2ε−δ
µ−σ interleaving between the two persistence modules, which implies

dB(Dx
X2ε , Dx

Xδ ) ≤ 2ε
µ by letting σ go to zero. Using the same reasoning as in the proof

of Theorem 7.7, except that we have to use the first inequality of Lemma 5.16 since a priori
there is no injection between the two diagrams Dx

X and Dx
X2ε , we get for any positive R:⃓⃓⃓

Vi(X2ε) − Vi(Xδ)
⃓⃓⃓

≤ εP (i, d)
µRi+1

∫︂
Rd

(NR
0 (Dx

X2ε) +NR
0 (Dx

Xδ )) dx. (7.8)

By Lemma 7.6:⃓⃓⃓
Vi(X2ε) − Vi(Xδ)

⃓⃓⃓
≤ εP (i, d)

µRi+1

(︂
Vol(X2ε) +MR(X2ε) + Vol(Xδ) +MR(Xδ)

)︂
. (7.9)

We already know that Vol(Xδ) converges to Vol(X). Let us prove the first statement and
assume that reach(X) > 0. By the tube formula, the intrinsic volumes of Xδ are the (scaled)
coefficients of the Steiner polynomial ofX translated by δ, and thus Vi(Xδ) converges to Vi(X)
when δ goes to zero. We are left to prove that limδ→0MR(Xδ) = MR(X) to obtain the desired
inequality. If 0 ≤ δ < reach(X), writing hδ : (x, n) ↦→ (x+ δn, n), we have:

Nor(Xδ) =
⋃︂

(x,n)∈Nor(X)
{x+ δn} × {n} = hδ(Nor(X)).
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Denoting by κi(z, n) the principal curvatures of X at a regular pair (z, n) of X and κδ,i(z′, n′)
the principal curvatures of Xδ at a regular pair (z′, n′) of Nor(Xδ), we have:

κδ,i(z + δn, n) = fδ(κi(z, n)),

where fδ(s) = s
1+δs . Since κi(x, n) ≥ − 1

reach(X) the quantities fδ(κi(x, n)) are well-defined
for any δ < reach(X). The change of variable formula yields for any positive t:

MR(Aδ) =
∫︂

Nor(Aδ)

d−1∏︂
i=1

|1 + tκδ,i|√︂
1 + κ2

i,δ

dHd−1(x, n)

=
∫︂

Nor(A)
Jd−1(hδ)

d−1∏︂
i=1

|1 + tfδ(κi)|√︁
1 + fδ(κi)2 dHd−1(x, n).

Since hδ − Id is δ-Lipschitz, we have

(1 − δ)d−1 ≤ Jd−1(hδ(x, n)) ≤ (1 + δ)d−1.

Hence, as δ tends to 0, Jd−1hδ tends to 1 and fδ(κ) tend to κ for all κ ∈ R. Lebesgue dominated
convergence theorem gives:

lim
δ→0

MR(Xδ) =
∫︂ R

0

∫︂
Nor(A)

d−1∏︂
i=1

|1 + tκi|√︂
1 + κ2

i

dHd−1(x, n) dt

= MR(X).

□

Combining Theorem 7.9 and Theorem 7.7 gives us a way to estimate Vi(X) from Y :

Corollary 7.10 (Linear rate of approximation for the intrinsic volumes). Let X,Y ⊂ Rd and
µ, ε > 0 be such that dH(X,Y ) ≤ ε < 1

4 reachµ(X). If reach(X) > 0, we have:

⃓⃓⃓
Vi(X) − V ε,R

i (Y )
⃓⃓⃓

≤ εP (i, d)
µRi+1

(︂
Vol(X) + 2 Vol(X2ε) +MR(X) + 2MR(X2ε)

)︂
. (7.10)

We prove Theorem 7.1 using similar methods as before, except that the interleavings between
persistence modules stem from the existence of a (ε, δ)-homotopy equivalence.
Proof of Theorem 7.1.

Let x be any point of Rd and let Ma := M ∩ B(x, a) for any subset M of Rd and a ∈ R.
The map H1 : [0, 1] × Y → Y is a homotopy between f ◦ g and IdY , and by assumption
its restriction to Ya is a continuous map Ha

1 : [0, 1] × Ya → Ya+2δ. This yields a homotopy
between f ◦ g : Ya → Ya+2δ and the inclusion Ya ↪−→ Ya+2δ. Letting δ′ be a positive real such
that 2ε+ 2δ′ ≥ 2δ, we obtain this commutative diagram of continuous maps:

Xa+ε Xa+ε+δ′

Ya Ya+2ε+δ′ Ya+2ε+2δ′

g

ψ
f

ϕ
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Since the same holds symmetrically for Ha
2 , we can apply the homology functor to obtain the

following commutative diagram thanks to the homotopy between ψ ◦ ϕ (resp. ϕ ◦ ψ) and the
inclusion Ya ↪−→ Ya+2ε+2δ′ (resp. Xa ↪−→ Xa+2ε+2δ′):

H∗(Xa) H∗ (Xa+ε+δ′) H∗ (Xa+2ε+2δ′)

H∗(Ya) H∗ (Ya+ε+δ′) H∗ (Ya+2ε+2δ′)

Optimizing on δ′, this yields dB(Dx
X , D

x
Y ) ≤ max(ε, δ) for any x ∈ Rd. Now following the

same line of reasoning as the proof of Theorem 7.9, first bounding the L1 norm of QX − QY ,
and then retrieving its coefficients, we obtain the bound:

|Vi(X) − Vi(Y )| ≤ max(ε, δ)P (i, d)
Ri+1 (Vol(X) +MR(X) + Vol(Y ) +MR(Y )) .

□

Remark 7.11 – The bounds obtained in Theorem 7.7, Theorem 7.9, Corollary 7.10 and Theo-
rem 7.1 depend on the parameter R and explode when R → 0 or ∞. While this is not critical for
the asymptotic rate, it could be interesting to find ways of guessing good values of R a priori. The
main results stated in the introduction are obtained taking R = 1 and using Proposition 6.15.

7.2.4 Computing persistent intrinsic volumes

We conclude this paper by discussing how one may compute our estimators in practice, as-
suming Y is given as a finite set of points. From the proof of Theorem 7.7 the V ε,R

i (Y ) are given
by:

V ε,R
i (Y ) =

∫︂ R

0

∫︂
Rd
χ(Dε,x

Y (r))Si,d(r) dx dr,

where Si,d is a polynomial.
Computing this integral exactly would involve computing a d-dimensional family of persis-

tence diagrams, which is computationally daunting. We may however easily approximate V ε,R
i (Y )

with arbitrary accuracy using a Monte-Carlo method by sampling points x uniformly in the R-
offset of Y and computing the image persistence diagrams of their distance function dx using e.g.,
[BS23]. The number of trials required to reach accuracy δ is of the order of δ−2 times the variance

of the random variable V =
∫︂ R

0
χ(Dε,x

Y (r))Si,d(r) dr.

The variance of V is bounded by sup |V |2 and we have:

sup |V | ≤ sup
x∈Rd

NR
0 (Dε,x

Y ) sup
r∈[0,R]

RSi,d(r)

that is, a polynomial in R times the maximum size of the image persistence diagram of dx. Now
by Proposition 7.4, the sizes of these image persistence diagrams are at most the sizes of the
persistence diagrams of dx|X2ε .

One situation where we can uniformly bound the size of these diagrams is when X is a semi-
algebraic set, since by Thom-Milnor [Mil64] the number of critical points of dx|X2ε is bounded by
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a function of the degrees of the polynomial equalities and inequalities defining X . Another bound
is provided by Remark 7.3. This bound is pessimistic in general as the smallest simplicial complex
sandwiched between Y ε and Y 3ε may have numerous simplices, yet one expects the number of
critical points of dx|C to be much smaller on average. We leave more in-depth investigations of
the computational aspects of our method for future work.

7.3 Validity of the approximation results among broader classes of
sets

Interestingly enough, along the way to Theorem 7.9, we obtained bounds on
||QA2ε −QAδ ||1,R when max(δ/2, dH(A,B)) ≤ ε ≤ reachµ(A)/4. Our method is applica-
ble to some cases where A2ε is outside the reach of Aδ , that is, in a case where the normals of
A2ε are not related in a straightforward manner to those of Aδ. This illustrates the robustness
of persistent geometry compared to more classical methods of estimating the normal cycle by
comparing normals, such as [LRT22], which require the approximating set to be within the reach
of the approximated set.

However, to ensure that the last bound ||QA2ε −QAδ ||1,R actually transfers to a bound involv-
ing the Steiner polynomial of A when δ → 0, we assumed that A had positive reach. As we have
seen in Chapter 6, there are many kinds of subsets admitting curvatures which have zero reach,
with examples as simple as non-convex polyhedra. The aim of this section is to discuss how our
quantitative results can still hold in various contexts. First remark that the R-mass of a current can
be extended to sets admitting a normal cycle.

7.3.1 R-mass of a set admitting a normal cycle

Definition 7.12 (R-Mass of a set). Let R > 0. The R-mass is extended to any set X ⊂ Rd
admitting a normal cycle NX by putting

MR(X) :=
∫︂ R

0
M(NX Pϕ(t)) dt (7.11)

where Pϕ : t ↦→
∑︁d−1
i=0 t

i(d − i)ωd−iϕd−i ∈
⋀︁
d−1(Rd × Sd−1) is a (d − 1) differential form,

polynomial in t involving the Lipschitz-Killing forms, with action on (d− 1)-covectors

⟨a1 ∧ · · · ∧ ad−1, Pϕ(t)(x, n)⟩ := det(π0(a1) + tπ1(a1), . . . , π0(ad−1) + tπ1(ad−1), n).

Thanks to the factorized expression, we can see that ||Pϕ(t)||∞ ≤ (1 + t2)(d−1)/2, thereby
showing that the bound of Proposition 6.15 holds in the context of normal cycles.

Proposition 7.13 (Bounds on R-mass). Let X be a set admitting a normal cycle. Then for every
R > 0, we have

MR(X) ≤
(︄∫︂ R

0
(1 + t2)(d−1)/2 dt

)︄
M(NX). (7.12)

Remark 7.14 – A part of the proof of Theorem 7.9 was to show that when X has posi-
tive reach, MR(Xδ) was converging to MR(X) when δ tends to 0+ for any positive R. Us-
ing the language of currents, the proof becomes straightforward. Let 0 < δ < reach(X).
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Then NXδ = (hδ)#(NX). Since hδ is (1 + δ)-Lipschitz, for any 0 ≤ t ≤ R, we have
M(NXδ Pϕ(t)) ≤ (1 + O(δ))M(NX Pϕ(t)). We obtain the same inequality with X,Xδ

switched considering that NX = (h−δ)#(NXδ ).

7.3.2 Generalization of the convergence results

To generalize Theorem 7.9 to sets with reach 0 with our method, we have to assume that X
admits a normal cycle and that it has a positive µ-reach. We need the Steiner polynomial of small
offsets QXδ to converge to QX when δ tends to 0. This is equivalent to the convergence of the
intrinsic volumes of Xδ to those of X . However, the existence of a link between the normal cycle
of Xδ, which is defined as the integration over the submanifold Nor(Xδ), and the normal cycle of
X defined axiomatically is not clear. If we assume that NXδ converges to NX in the flat norm, the
weak convergence implies

Vi(X) = NX(ϕi) = lim
δ→0+

NXδ (ϕi) = lim
δ→0+

Vi(Xδ). (7.13)

The bounds we obtained on ||QA2ε −QAδ ||1,R involves Vol(Xδ), which converges to Vol(X)
when δ tends to 0, and MR(Xδ). When δ tends to 0, this bound becomes lim infδ→0MR(Xδ).
One can wonder if this quantity is finite, and if so, if it can be replaced by one only involving the
set X itself.

Without further informations, Theorem 7.9 generalizes as follows:

Theorem 7.15 (Convergence of the intrinsic volumes of an offset). Let X ⊂ Rd and µ, ε > 0 be
such that ε < 1

2 reachµ(X). Assume the normal cycles Xδ converge to those of X as δ tends to
zero. Then we have⃓⃓⃓

Vi(X) − Vi(X2ε)
⃓⃓⃓

≤ εP (i, d)
µRi+1

(︃
Vol(X) + Vol(X2ε) + lim inf

δ→0
MR(Xδ) +MR(X2ε)

)︃
.

Now we discuss when this convergence is true. We begin by a counter-example to illustrate
how NXδ and MR(Xδ) might diverge.

7.3.3 Counter-example to the convergence of intrinsic volumes

The assumption that X has a positive µ-reach is not enough to guarantee that X admits a
normal cycle, as we have seen in Section 3.2.2 that such a set might have infinite area boundary.

Let us now consider a sequence of positive, non-increasing angles (θi)i∈N bounded by π/4,
such that the sum

∑︁
i θ

2
i converges but not

∑︁
i 2iθi. The limit set X ⊂ R2 has positive µ-reach

for some µ > 0, a finite length H1(X) and is a non-intersecting curve (thus χ(X) = 1). If the
normal cycle of X were to exist, these last two quantities could be considered respectively V1(X)
and V0(X) by the classical interpretation of the intrinsic volumes.

Small offsets Xδ are complementary regular sets, and admit as such normal cycles NXδ .
They can be obtained as the functionals integrating on the Lipschitz submanifold Nor(Xδ). By
Theorem 3.31, this coincides with the graph of the normalized Clarke gradient of dX , on the
δ-level set:

graphδ(dX) :=
⋃︂

dX(x)=δ
{x} × ν(∂*dX(x))



7.3 – 7.3.4 Distance auras 111

where ν : Rd \ {0} → Sd−1 is the normalizing map. By the assumption on
∑︁
i 2iθi, the normal

cycles NXδ do not converge to any current in the flat sense, as |NXδ (ϕ0)| diverges to ∞ when
δ → 0 per Proposition 3.24. When d = 2, the differential form Pϕ(t) can be written aϕ0 + tbϕ1
for some positive constants a, b, which implies that MR(Xδ) diverges to ∞ as δ tends to 0.

7.3.4 Distance auras

The fact that NXδ is the integration over the oriented Lipschitz submanifold graphδ(dX) was
formalized and generalized by Fu [Fu94, Definition 1.1] using the following terminology of auras.

Definition 7.16 (Monge-Ampère maps and auras). A locally Lipschitz, proper map f : Rd → R
is said to be Monge-Ampère when there exists an integral Legendrian cycle T representing the
integration over the graph of ∂*f , i.e., for any smooth function ϕ : Rd × Rd → R,

T (ϕ · π∗
0(dx)) =

∫︂
Rd
ϕ(x,∇f(x)) dx (7.14)

where π∗
0(dx) is pullback of the canonical volume form of Rd by π0. When it exists, the current

T is uniquely defined. Any C1,1, semi-concave or semi-convex map is Monge-Ampère [Fu89b,
2.4].

An aura forX is a proper, non-negative Monge-Ampère map such that f−1(0) = X . It is said
to be non-degenerate when there exists a δ > 0 such that on f−1(0, δ], we have ∆(∂*f(x)) ≥ δ.

Every set admitting a non-degenerate aura admits a normal cycle defined as the limit (in the
flat norm) of the current integrating over the graph of ν(∂*f) over the boundary of the oriented
Lipschitz submanifold f1(−∞, r], thereby showing that this limit does not depend on the choice
of the non-degenerate aura f [Fu94, Section 3]. The Monge-Ampère condition ensures that these
currents are all Legendrian cycles, and that there is indeed convergence. The previous counter-
example of sets with positive µ-reach with no normal cycle shows that dX might be non-degenerate
and not Monge-Ampère.

Yet by conception, dX is a good candidate to be an aura for X as it is proper, non-negative and
satisfy d−1

X (0) = X . The non-degeneracy condition for dX is equivalent to having reachµ(X) > 0
for some µ > 0. We can define "distance auras" so that Theorem 7.15 apply.

Definition 7.17 (Distance auras). We say that a compact X of Rd admits a distance aura when X
admits a normal cycle NX and when there exists a µ ∈ (0, 1] such that

— reachµ(X) > 0;
— The currents NXδ converge to NX in the flat norm as δ tends to 0.
— lim infδ→0M(NXδ ) < ∞.

When the condition reachµ(X) > 0 is replaced by wfs(X) > 0, we say that X admit a weak
distance aura.

We have already seen that compact sets with positive reach have a distance aura, with the
added property that MR(X) = limδ→0+ MR(Xδ). Subanalytic sets with positive µ-reach for
some µ > 0 form another class of sets admitting a distance aura.

Proposition 7.18 (Subanalytic sets admit a weak distance aura). Every compact subanalytic set
has a weak distance aura.

Proof.
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This is a rephrasing of Fu’s main result in [Fu94] : subanalytic sets have necessarily a positive
weak feature size as the set of critical values of dX is locally finite; and NXδ converges to NX

as dX is a subanalytic aura for X . By subanalycity of the map δ → MR(Xδ), the liminf is
necessarily finite.

□

It is not known whether other sets which have been proven to admit normal cycles and have
a positive µ-reach admit a distance aura. For example, a WDC-set X can locally be written as a
sublevel set of a DC function at a weak regular value. Determining whether this translates to dX
is not clear, as Fu, Rataj and Pokorny pointed out in [FPR17, Section 5.1]. Pokorny and Zajicek
established that it was true for d = 2 in [PZ21], while the problem remains open when d ≥ 3.



CHAPTER 8
Conclusion and future

prospects
Donnez-moi de la terre... Donnez-moi de la terre à contrer !

Conclusion. In this thesis, we have used notions from different areas of mathematics to obtain a
result in geometric inference concerning the so-called intrinsic volumes. Following the principles
of what we call persistent geometry, we have exploited the relationships between the topology of
an object and its geometry, obtained thanks to integral geometric formuals (Chapter 6). Thanks
to a quantitative result connecting sublevel sets of Lipschitz functions (Chapter 2), to the links
between an object satisfying weak regularity conditions and its distance function (Chapter 3), as
well as the use of image persistence modules (Chapter 5), these relationships enabled us to transfer
the filtering properties of persistence homology to the geometric inference framework (Chapter 7).
This required a bound on the number of critical points of distance to a point functions in Rd, which
we obtained by constructing a Morse theory adapted to tubular neighborhoods (Chapter 4).

Future prospects. However, we only estimated the intrinsic volumes of an object, which are
global quantities obtained from the curvatures, and not the curvatures themselves. Indeed, we
were estimating the total measure of the curvature measures, but not where the mass of these
measures lies. We conjecture that by exploiting more finely the properties of the persistence
diagrams of the distance-to-a-point functions, we can localize the curvature measures, leading to
their retrieval up to an error that is proportional to the square root of the Hausdorff distance in the
Wasserstein distance. This would corroborate the results of [CCM10], while generalizing them
to the case where dH(X,Y ) exceeds the reach of the approximated object. The challenge resides
in circumventing the lack of well-defined projection map onto the closest point above the reach,
which we believe can be done with the help of image persistence. Estimating the normal cycle
of the approximated object is more complex than estimating curvature measures. Following the
previous conjecture, it seems reasonable to think that the normal cycle can be estimated at a rate
of O(

√︁
dH(X,Y )) for the flat norm.

On another note, our works focused on the inference of intrinsic volumes but did not explore
the full framework of persistent geometry. Even restricted to the sole use of the principal kine-
matic formula as a link between topology and geometry, our method yields different estimators
depending on a parameter R > 0. It would be interesting to focus on the concepts of persistent
geometry per se to see to what extent we can make sense of the geometry of a nested pair, of which
we have only explored one facet.
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APPENDIX A
Basic terminology

surrounding currents
We fix the basic notations for the space of covectors, differential forms and give general vo-

cabulary for currents. While the theory of currents is not necessary to understand the main result in
inference geometry in Chapter 7, its terminology is particularly adapted to the study of curvatures
as seen in the end of Chapter 6.

A.1 Covectors and differential forms

We assume that basic knowledge about covectors and differential forms is already known to
the reader; if not, we refer to either [Fed69, Chapter 1] or [RZ19, Section 1.2]. We fix d ∈ N for
the remainder of the annex.

Definition A.1 (Covectors and m-alternating forms). We denote by
⋀︁
m(Rd) the space of m-

covectors of Rd, and
⋀︁m(Rd) the space of m-linear, alternating forms on Rd.

Recall that
⋀︁

1(Rd) = Rd and that there exists a wedge operator ∧ :
⋀︁
i(Rd) ×

⋀︁
j(Rd) →⋀︁

i+j(Rd) for every i, j ∈ N. For every basis e1, . . . , ed of Rd and I = {i1, . . . ir} ⊂ {1, . . . d},
we let eI := ei1 ∧ · · · ∧ eir ∈

⋀︁r(Rd). Equivalently, we also write eI =
⋀︁
i∈I ei. It can be seen

that the m-covectors eJ , where J ranges among all subsets of {1, . . . , d} of cardinal m, form a
basis of

⋀︁
m(Rd). When e1, . . . , ed is the canonical basis of Rd, we equip

⋀︁
m(Rd) with the scalar

product corresponding to the decomposition into the basis of m-covectors of the form eJ .
A great interest of covectors lies in the geometrical meaning they carry. For instance, the

norm of e1 ∧ · · · ∧ em is the Hm-measure of the convex hull of e1, . . . , em, which is also equal
to the absolute value of the determinant of the vectors e1, . . . , em in any orthonormal basis of the
vector space they generate. We can also think m-covectors as a way to equip subspaces of Rd
of dimension m with a structure of vector space. Indeed, we may think of e1 ∧ · · · ∧ em as the
vector space generated by the vectors e1, . . . , em of Rd - keeping in mind that this correspondence
is bijective up to a linear factor. Note, however, that not all covectors can be written that way.

Definition A.2 (Simple covectors). An element of
⋀︁
m(Rd) is said to be simple when it can be

written as the wedge product of m vectors of Rd.

The space of alternatingm-linear maps is dual tom-covectors of Rd. Following the convention
of geometric measure theory, for every pair (v, u) of

⋀︁m(Rd) ×
⋀︁
m(Rd), we write ⟨u, v⟩ for the

evaluation v(u). The graded vector spaces of alternating multilinear forms is also endowed with a
wedge operator ∧.
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Definition A.3 (Differential forms). For every open set U of Rd, we denote by Dk(U) the space
of smooth k-differential forms with compact support in U .

Let f : U → V be a C1 map and ϕ ∈ Dk(V ). The pullback of ϕ∗f is defined as

(ϕ∗f)x : e1 ∧ · · · ∧ ek ↦→ ϕf(x) (Dxf(e1) ∧ · · · ∧Dxf(ek)) (A.1)

A.2 Currents

Although properly defined in functional analysis as linear forms over smooth, compactly sup-
ported differential forms exactly as distributions are defined as continuous linear forms on the
space of compactly smooth functions, currents can be used to encode great a many geometric
concepts [Fed69]. We omit their precise definition and simply denote by Dk(U) the space of
k-currents over an open subset U or Rd. However, we will work with currents representable by
integration and their derivates, which are easier to represent.

Definition A.4 (Current representable by integration). T is said to be a k-current representable
by integration on U ⊂ Rd when there exists a k-rectifiable subset of RdWT , called the support of
T - uniquely defined up to set of Hk-measure zero - and Hk-integrable field of covectors aT , such
that for any ψ ∈ Dk(U),

T (ψ) :=
∫︂
WT

⟨aT (x), ψ(x)⟩ dHk(x). (A.2)

Thanks to this expression, T (ψ) can be defined for any measurable, bounded vector field of
k-alternating linear forms ψ. Moreover, when ||aT (x)|| is an integer Hk-almost everywhere in
WT , we say that T is an integral k-current.

Definition A.5 (Restriction of a current). Let T be a k-current on U ⊂ Rd and let ω be in Dm(U)
with m ≤ k. Then the restriction T ω ∈ Dk−m(U) is defined by

(T ω)(ψ) := T (ω ∧ ψ). (A.3)

In particular, for any Borelian subset A of Rd, we let T 1A be the k-current T restricted to A,
which is defined as:

(T 1A)(ψ) :=
∫︂
WT

1A(x) ⟨aT (x), ψ(x)⟩ dHk(x). (A.4)

Definition A.6 (Pushforward of a current). Let f : U → V be a C1 map. The pushforward of T
by f is:

f#T : ϕ ↦→ T (ϕ∗f). (A.5)

When f : U → V is merely Lipschitz and ϕ ∈ Dk(V ), the pullback of ϕ by f exists almost every-
where thanks to Rademacher’s theorem. When T is representable by integration, the pushforward
can be further defined by:

f#T : ϕ ↦→
∫︂
WT

⟨aT (x), (ϕ∗f) (x)⟩ dHk(x). (A.6)
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Definition A.7 (Boundary of a current). Using the classical exterior derivative on the space of
differential forms we define the boundary ∂T of a k-current T , which is a (k − 1)-current, as
follows.

∂T (ψ) := T (dψ). (A.7)

In particular, we say that T is a cycle when ∂T = 0.

There are two main metrics on the space of currents.

Definition A.8 (Mass of a current). The mass of a current T is

M(T ) := sup{T (ψ) | ||ψ||∞ ≤ 1}. (A.8)

When T is representable by integration as in Definition A.4, the mass of T has an explicit integral
representation:

M(T ) =
∫︂
WT

||aT (x)|| dHd(x). (A.9)

Example A.9 – Let X be a compact, oriented, m-dimensional C1-submanifold (possibly with
boundary) of Rd. Consider the field aX of unit simple covectors induced by its tangent spaces
with a consistent orientation. Let [[X]] be the current integrating on X , i.e.:

[[X]](ψ) :=
∫︂
X

⟨aX(x), ψ(x)⟩ dHm(x). (A.10)

The infamous Stokes theorem states that ∂[[X]] = [[∂X]], and we have furthermore M([[X]]) =
Hm(X). In particular, the current integrating over a submanifold without boundary is a cycle.

The topology induced by the mass metric is restrictive, as even infinitesimally translated cur-
rents τ(t)#(T ) fail to converge to T in the general setting when τ(t) : x ↦→ x+tν is the translation
in some direction ν ∈ Sd−1 of magnitude t.

Definition A.10 (Flat norm of a current). The flat norm of a current T with compact support is:

F (T ) := sup{T (ψ) | ||ψ||∞ , ||dψ||∞ ≤ 1}. (A.11)

This coincides with the following dual definition:

F (T ) = inf{M(S) +M(Q) | T = Q+ ∂S}, (A.12)

where Q,S range among compactly supported currents of suitable dimensions.

The topology induced by this metric is related to the weak convergence of currents.

Proposition A.11 (Flat norm metrizes weak convergence). Let U be a bounded open subset of
Rd. Then a sequence (Tn)n∈N of Dk(U) with uniformly bounded mass converges to T for the flat
norm, (i.e. F (Tn − T ) → 0) if and only if for every k-differential form ψ of Rd, we have

lim
n→∞

Tn(ψ) = T (ψ). (A.13)

From these considerations, we can bound the mass of a flat limit of currents.

Proposition A.12 (Mass of flat limits). Let U be a bounded subset of Rd and let (Tn)n∈N be
a sequence in Dk(U) with bounded mass converging to T with respect to the flat norm. Then
M(T ) ≤ lim infn→∞M(Tn).







Géométrie persistante

Antoine COMMARET

Abstract

This thesis is dedicated to geometric inference, and more specifically to the estimation of cur-
vatures of objects in Euclidean space from an approximating set that is close in the Hausdorff
distance. In order to extend the filtering property of persistent homology to the realm of geom-
etry, we introduce the framework of persistent geometry. It consists in combining connections
between the topology and the curvatures of a subset of Rd provided by integral geometry, such
as the principal kinematic formula, with persistence theory thanks to the so-called image per-
sistence modules. We develop a new method to estimate the intrinsic volumes of a set, which
are global quantities built from the curvatures of the set; particular intrinsic volumes include
boundary area, Euler characteristic, and mean curvature. Our method allows for the recov-
ery of the intrinsic volumes of a set from any approximating set up to an error that is linear
with respect to the Hausdorff distance between them. We show that this approximation is
valid as long as the estimated set has bounded total curvature and a positive µ-reach for some
µ ∈ (0, 1). The µ-reach is a relaxation of the reach of Federer defined to extend geometric
inference results to possibly non-smooth, non-convex sets. The class of compact sets of Rd
having bounded total curvatures and a positive µ-reach for an arbitrary µ in (0, 1) is broad,
containing compact C1 submanifolds, compact convex sets, polyhedra, and more generally
many compact stratified subsets of Rd. To deal with these possibly singular sets, we use tools
from different fields of mathematics, such as non-smooth analysis, geometric measure theory,
and Morse theory. In particular, a crucial step in our reasoning consists in the development
of Morse theory for offsets of a set at regular values of its distance function. We show that
the topology of sublevel sets of smooth maps restricted to such objects — which are not C2

manifolds — typically evolves by the gluing of cells around each critical point, just as in the
classical Morse theory on C2 manifolds.

Keywords: Geometric inference, Persistent homology, Geometric measure theory, Integral
geometry, Topological data analysis
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