Introduction

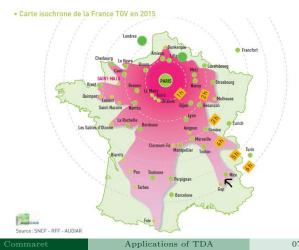
Applications of Topological Data Analysis **ARAMIS** Lab Seminar

Antoine Commaret

07/10/2022

About me

• PhD Student at INRIA Sophia-Antipolis in Persistent Homology and Geometric Measure Theory under the supervision of David Cohen-Steiner in the DataShape team.



About DataShape

We want to understand the shape of data.

- Geometrical and topological Inference
- Persistent Homology Theory
- Applications in Machine Learning and Biology

Today's Presentation

Goals

Today's goals :

- Briefly explain/remind you the key principles of Persistent Homology.
- Give you examples of its use in Data Analysis, to see if it can be of use in your work.

About Homology

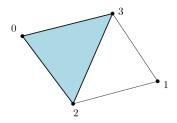
Question : What is Homology?

Intuitively, no need for exhausting definitions.

Antoine Commaret

About Homology

Answer : a way to count holes or connected components !



General case

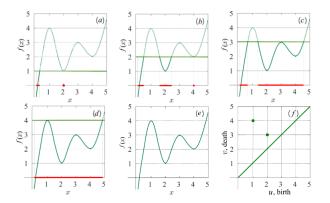
Filtration

Say you have sets $(X_t)_{t \in \mathbb{R}}$ increasing with t, that is

$$s < t \implies X_s \subset X_t$$

Keep track of the evolution of the **homology** (i.e the number of holes/connected components) of X_t . Generally, given $f: X \to \mathbb{R}$ we take $X_t = f^{-1}(] - \infty, t]$).

General Case : sublevel filtration



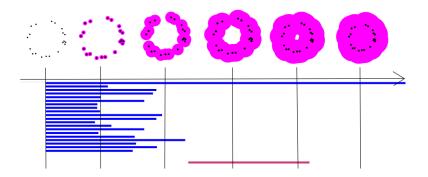
Working with distance functions

Let X be a point cloud.

Offset filtration

We can study the topology of the set X^r of points at distance to X smaller than r.

Working with distance functions



Working with distance functions

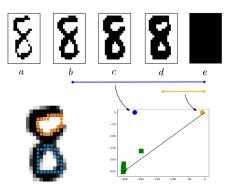
Persistent Homology is not always pertinent

The data needs to be **clean**. Otherwise, we will not extract as much information.

Intensity of Pixels

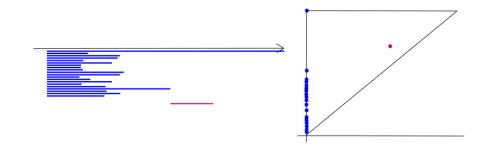
Let X be a picture with one dimensional intensity (i.e grayscale). Intensity Filtration

We can study the topology of sets only containing the pixels with intensity smaller than r and watch how it evolves.



Persistent Diagrams

Each bar I is caracterized by its birth-death couple (b_I, d_I) . We can see it in the plane \mathbb{R}^2 :



Antoine Commaret Applications of TDA 07/10/2022	13
---	----

/ 38

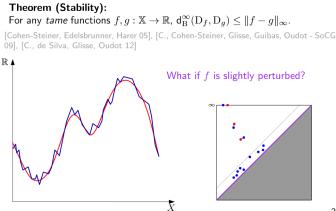
Comparing Diagrams

As set of points in \mathbb{R}^2 , we can quantitatively compare diagrams through the so-called **bottleneck distance**.

-> Allows to do **statistics** on topology!!

Comparing Diagrams

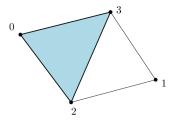
As set of points in \mathbb{R}^2 , we can quantitatively compare diagrams through the so-called **bottleneck distance**.



What does the computer do?

The computer works with **simplicial complexes** which is a data structure.

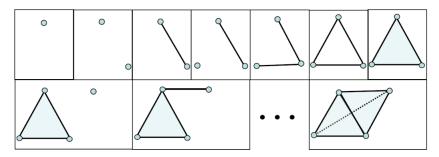
It stores both the vertices and how the vertices are linked.



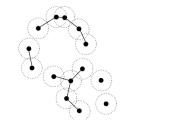
What does the computer do?

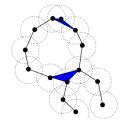
The computer works with **simplicial complexes** which is a data structure.

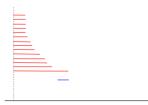
It stores the vertices and how the vertices are linked.



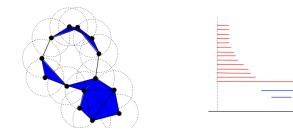
Algorithmic point of view

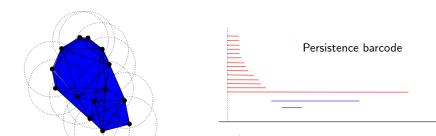






Algorithmic point of view





Worst case Complexity

Computing a persistence diagram requires at most $O(n^3)$ operations, where n is the number of simplices of the filtration.

Everyday Complexity

In practice, most persistence diagrams computations require **only** roughly O(n) operations, where n is the number of simplices.

How to use it?

There are different libraries for TDA.

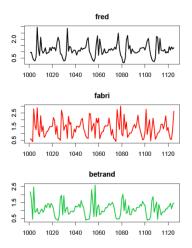
Totally unbiased, I suggest the GUDHI package from the DataShape team !

ਗੂਫੀ GUDHI Geometry Understanding in Higher Dimensions

Written in C++ for efficiency, with a high-level Python interface.

Toy example : Phones in a pocket

Fred, Fabrice and Bertrand have their own way to walk.



Toy example : Phones in a pocket

Fred, Fabrice and Bertrand have their own way to walk.

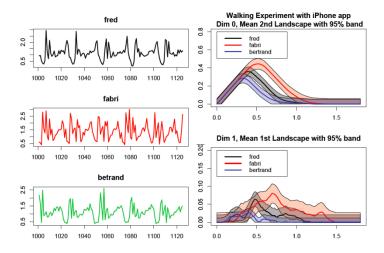
Idea : Using persistence over the functions

The functions are given by the accelerometer over walks.

-> We cut the one-hour walk in small parts to do statistics

Toy example : Phones in a pocket

Fred, Fabrice and Bertrand have their own way to walk.



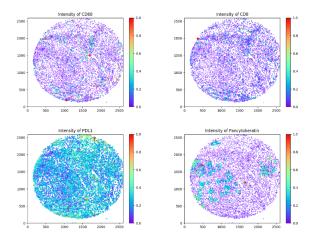
From a study using TDA to do statistical tests about breast cancer.

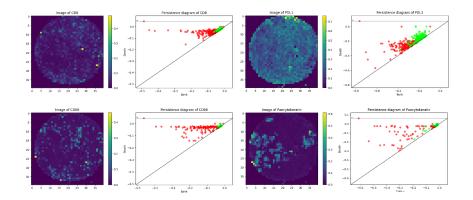
The data

They had access to breast tissue samples and the knowledge of the disease's evolution.

Goal : to predict cancer subtype from the tissue.

Examples of a subsample :



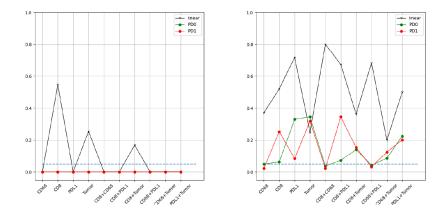


Idea

The authors' idea : combining different persistence diagrams to cleverly extract data.

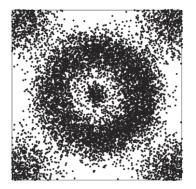
Result

It ranked better than the state-of-the-art at the time!



Clustering using persistence

Clustering is hard when working with big points clouds.

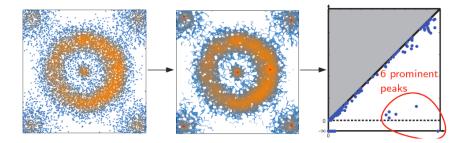


Luckily, there is ToMATo! (Topological Mode Analysis Tool)

Clustering using persistence

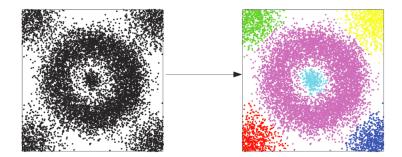
Idea

We can filter by the density of points!



Clustering with ToMATO

Clustering using persistence



Complexity

The complexity is $O(n \log(n))$ where n is the number of points.

Differentiating persistence diagrams - a quick overview

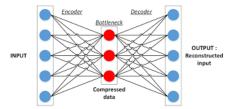
- You want to compute the persistence diagram of a picture.
- Its persistence diagram is a function of the intensity of the pixels

-> You can differentiate any persistence diagram!

Applications : Loss in a Neural Network

Given a Neural Network framework, topology can become important if you find a way to write a part of your loss as a function over the persistence diagrams.

Example : Topological Autoencoders



Loss : the distance between the persistence diagrams of the input/output.

Remerciements

Thank you for listening!

Feel free to ask any questions!

Antoine Commare

Applications of TDA