Intrinsic Persistent Volumes Ongoing work with David Cohen-Steiner

Antoine Commaret

12/05/2022

The context

Say we know of K a compact set approximating an ideal object \tilde{K} in \mathbb{R}^d . We want to know a geometric quantity $\varphi(\tilde{K})$.

How do we estimate $\varphi(\tilde{K})$ from K?

The context

Offsets

Let $r \ge 0$. We put $A^r = \{x \in \mathbb{R}^d | d_A(x) \le r\}$.

The Hausdorff distance

We put $d_H(\tilde{K}, K) = \inf\{r \ge 0, K \subset \tilde{K}^r, \tilde{K} \subset K^r\}$ the Hausdorff distance between \tilde{K} and K.

Plug-In Method

Denoting $\varepsilon = d_H(\tilde{K}, K)$, we seek an estimator $\hat{\varphi}(K)$ such that $\left|\varphi(\tilde{K}) - \hat{\varphi}(K)\right| \leq f_{\varphi, \tilde{K}}(\varepsilon)$ with $f_{\varphi, \tilde{K}}(s) \xrightarrow[s \to 0]{} 0$ as fast as possible.

Simply take $\hat{\varphi}(K) = \varphi(K)$?

Plug-In Method

Comes out as **unsatisfactory** :

- Not always well defined.
- Could be faster. We aim for a **linear** rate of convergence with relaxed assumptions.

Plug-In Method

Comes out as **unsatisfactory** :

- Not always well defined.
- Could be faster. We aim for a **linear** rate of convergence without too general assumption.

-> We thus need a **consistent** and **non-parametric** definition of quantities akin to areas and perimeters.

Intrinsic Volumes

Reach of a compact set

Given $A \subset \mathbb{R}^d$, we put reach(A) the distance to A under which every point has a **unique** closest point in A.

Intrinsic Volumes

Reach of a compact set

Given $A \subset \mathbb{R}^d$, we put reach(A) the distance to A under which every point has a **unique** closest point in A.

Intrinsic Volumes

Reach of a compact set

Given $A \subset \mathbb{R}^d$, we put reach(A) the distance to A under which every point has a **unique** closest point in A.

Let $A \subset \mathbb{R}^d$ be a compact set with reach r > 0.

Steiner's Formula

Over [0, r], $t \mapsto Vol(A^t)$ is a polynomial whose coefficients define the **intrinsic volumes** of A.

$$\operatorname{Vol}(A^t) = \sum_{i=0}^{d} \omega_i V_{d-i}(A) t^i$$

Example

Intrinsic Volumes : Example

Computing Steiner's Polynomial of a convex polygon in \mathbb{R}^2 .

• These are **intrinsic** quantities.

• These are **intrinsic** quantities.

• V_0 is in fact the Euler Characteristic χ (*Gauss-Bonnet Theorem*).

Figure 1 – A Happy Man

• These are **intrinsic** quantities.

• V_0 is in fact the Euler Characteristic χ (Gauss-Bonnet Theorem).

• $V_d(K)$ is the Lebesgue measure.

• These are **intrinsic** quantities.

• V_0 is in fact the Euler Characteristic χ (*Gauss-Bonnet Theorem*).

• $V_d(K)$ is the Lebesgue measure.

• $V_{d-1}(K)$ is the area.

Properties

Difficulties

Steiner's Formula **fails** when reach = 0

Could this condition be relaxed?

Solution we have come up with

• Considering set with "positive μ – reach", for $\mu \in]0,1]$.

• Using a novel formula, the **Principal Kinematic Formula**.

Properties

About the μ -reach

Definition

 $\operatorname{reach}_{\mu}(A)$ is the distance to A under which, for any x, and given two closest points a, b to x on K, the cosinus of the half angle between \vec{xa} and xb is bigger than μ .

Principal Kinematic Formula

Principal Kinematic Formula

Let A, B be compact sets of positive μ – reach for any $\mu \in]0, 1]$. Denote G the group of affine isometries of \mathbb{R}^d equiped with an invariant measure μ . Then,

$$\int_{g \in G} \chi(A \cap gB) \,\mathrm{d}\mu = \sum_{i=0}^d c_{d,i} V_i(A) V_{d-i}(B)$$

Using the Kinematic Formula

Rediscovering Steiner's Polynomial

Let $r \ge 0$. We arrive at Steiner's Polynomial through another road by taking $B = B_r$ a ball of radius r.

$$\int_{g\in G} \chi(A\cap gB_r) \,\mathrm{d}\mu = \sum_{i=0}^d \omega_i V_{d-i}(A)r^i$$

Persistence Steps in

χ is a topological quantity

Given a fixed $g, r \mapsto \chi(A \cap gB_r)$ is in fact the alternated sum of Betti Numbers of the persistence diagram associated to the function :

$$d_{g(0)}^{A} = \begin{cases} A \rightarrow \mathbb{R}^{+} \\ x \mapsto \|x - g(0)\| \end{cases}$$

Persistence steps in

χ is a topological quantity

Persistence Steps In

Key Idea

We have

$$\sum_{i=0}^{d} \omega_i V_{d-i}(A) r^i = \int_{\mathbb{R}^d} \chi(\operatorname{diag}_y^A) \, \mathrm{d}y = Q_A(r)$$

and thus it suffices to uniformly approximate the diagram of d_y^A : our surrogate for Steiner's polynomial will be

$$\hat{Q}_A(r) = \int_{y \in \mathbb{R}^d} \chi(\widehat{\operatorname{diag}}_y^A) \,\mathrm{d}y$$

given a diagram approximate $\widehat{\operatorname{diag}}_y^A$.

Let's not forget our aim

How do we approximate the diagram?

Image Persistence

Let's go back to \tilde{K} and K. Denote H^s_{\bullet} the persistence module induced by the function $d_y^{K^s}$ applying any homology functor, meaning $H^s_a = H(K^s \cap B(y, a)).$

We obtain the *image persistence module*, denoted $\widehat{\operatorname{diag}}_{y}^{K}$:

		\sim				
i m1	011		$^{\rm nm}$	m	are	

Noisy Domains Theorem

Taking inspiration from a previous article, we have the following result : Noisy Domains Theorem

$$d_B(\operatorname{diag}_y^{\tilde{K}^{2\varepsilon}}, \widehat{\operatorname{diag}}_y^K) \le \frac{4\varepsilon}{\mu}$$

L1 Approximation of Steiner's Polynomial

L1 Linear Approximation

For any R > 0, we have

$$\|Q_{\tilde{K}^{2\varepsilon}} - \hat{Q}_K\|_{1,[0,R]} \le \frac{4\varepsilon}{\mu} \int_{y \in \mathbb{R}^d} G_y^R \,\mathrm{d}y$$

Computing back the coefficient

Computing the coefficients of \hat{Q}_K through a linear projection ensures that we have an estimation **converging at a linear rate :**

$$\left| V_i(\tilde{K}^{2\varepsilon}) - \hat{V}_i(K) \right| \le O_{i,\tilde{K}}(\frac{\varepsilon}{\mu})$$

Conclusion and questions

• Does not require any regularity on K : could be voxels, point clouds.

• Is there a way to optimize the computation over the parameter R?

• How close is
$$V_i(\tilde{K}^{2\varepsilon})$$
 to $V_i(\tilde{K})$?

Remerciements

Thank you for listening!

