Generalized Morse Theory for certain subsets of \mathbb{R}^d

Antoine Commaret

24 July 2023

Innía

Sublevel sets topology

Sublevel sets topology

Let $X \subset \mathbb{R}^d$

Let $f : \mathbb{R}^d \to \mathbb{R}$

Sublevel sets topology

Evolution of $c \mapsto X_c = X \cap f^{-1}(] - \infty, c]$

Classical Morse Theory

Smooth object in \mathbb{R}^d

Assume $X \subset \mathbb{R}^d$ and f are smooth.

• $x \in X$ is a **critical point** when $\nabla f(x)$ is orthogonal to X at x.

• At a critical point, define the "Hessian of $f_{|X}$ at x" as a linear combination of the **Hessian** of f at x and the **second fundamental** form of X at x.

Torus and a height function

Morse Theory Theorem - Isotopy Lemma

Assume [a, b] does not contain any critical value.

Then X_a is a deformation retract of X_b

Morse Theory Theorem - Handle Attachment lemma

Suppose that for all $\varepsilon > 0$ small enough, $f^{-1}([c - \varepsilon, c + \varepsilon])$ contains only one non-degenerate critical point of index λ .

Then $X_{c+\varepsilon}$ has the homotopy type of $X_{c-\varepsilon}$ with a λ -cell attached.

Morse Theory Theorem - Handle Attachment lemma

Vocabulary

Separation distance

Separation distance

Define $\operatorname{sep}(A, B) = \inf_{(a,b) \in A \times B} ||a - b||.$

Clarke Gradient

Definition.

If $\phi : \mathbb{R}^d \to \mathbb{R}$ is locally lip. its **Clarke Gradient** $\partial^* \phi(x)$ at x is the convex hull of the sets of limits $\lim_{h_i \to 0} \nabla \phi(x+h_i)$.

Antoine Commare	
-----------------	--

Clarke Gradient

Definition.

If $\phi : \mathbb{R}^d \to \mathbb{R}$ is locally lip. its **Clarke Gradient** $\partial^* \phi(x)$ at x is the convex hull of the sets of limits $\lim_{h_i \to 0} \nabla \phi(x+h_i)$.

An	Commaret

Critical points

Idea : Critical Points x of a lip function ϕ are such that $0 \in \partial^* \phi(x)$

Approximate Flow Lemma

Idea : Critical Points x of a lip function ϕ are such that $0 \in \partial^* \phi(x)$

Approximate Flow Lemma.

Let a < b, ϕ locally lipschitz. Assume

$$\inf_{x \in \phi^{-1}([a,b])} \sup(\partial^* \phi(x), \{0\}) > 0$$

Then $\phi^{-1}(] - \infty, a]$ is a deformation retract of $\phi^{-1}(] - \infty, b]$.

Distance to a closed set in \mathbb{R}^d

$$d_X(x) = \inf_{y \in X} \|x - y\|$$

\nt	\cap	ommaret

•

Clarke gradient of a distance function

$\partial^* d_X(x)$ has a geometrical meaning

1 m	toine	'ommaro'	F
TTT	LOUNC .	Commare	

Clarke gradient of a distance function

 $sep(\partial^* d_X(x), \{0\})$ measures how "flat" the angles between two closest points of x in X are at worst.

Antoine	Commaret	

 μ -reach

Definition

 $\operatorname{reach}_{\mu}(X) = \sup\{t \in \mathbb{R}, d_X(x) \le t \implies \operatorname{sep}(\partial^* d_X(x), \{0\}) \ge \mu\}$

reach_µ(X) > 0 means that there is a neighborhood of X in which the angle between two directions of closest points from x in X cannot be "too flat.".

reach

Definition

 $\operatorname{reach}_{\mu}(X) = \sup\{t \in \mathbb{R}, d_X(x) \le t \implies \operatorname{sep}(\partial^* d_X(x), \{0\}) \ge \mu\}$

reach₁(X) = reach(X) > 0 means that there is only one closest point in X in a neighborhood of X.

A Small word on curvatures

Normal Cones of sets with positive reach

Take $X \subset \mathbb{R}^d$ of positive reach. Put Nor(X, x) set of directions with closest point x in X in a small neighborhood.

Normal Cycles of sets with positive reach

The **normal bundle** of X with reach(X) > 0

$$\operatorname{Nor}(X) = \bigcup_{x \in \partial X} \{x\} \times \operatorname{Nor}(X, x)$$

is a d-1 lipschitz submanifold of $\mathbb{R}^d \times \mathbb{S}^{d-1}$.

Integrating over it yields its Normal Cycle N_X .

Joseph Fu's Contribution

The positive reach case

Let $X \subset \mathbb{R}^d$ be of positive reach.

• $x \in X$ is a critical point when $\nabla f(x) = 0$ or $-\frac{\nabla f(x)}{\|\nabla f(x)\|} \in \operatorname{Nor}(X, x)$.

• Fu also defines a (more involved) Hessian using properties of the Normal Cycle.

Fu's Results

With those new definitions, the Morse Theorems apply.

c regular value $\implies X_c$ has a positive reach.

$$f^{-1}(]-\infty,c])$$

c regular value of $f_{|X} \implies$ for r > 0 small enough, X_c^r has positive reach "containing" X_c .

Our Contribution

Settings

Put
$$\tilde{X} = \overline{\mathbb{R}^d \setminus X}$$
 and assume reach $(\tilde{X}) > 0$ and reach $_{\mu}(X) > 0$.
Put Nor $(X, x) = -\operatorname{Nor}(\tilde{X}, x)$.

 \implies Keep the definition of critical points $-\nabla f(x) \in \text{Cone}(\text{Nor}(X, x))$

Generalized Morse Theory	24 July 2023	32 / 39

Setting

Main result

With those definitions, the Morse Theorems apply.

Setting

Why those conditions?

These definitions are verified by any tubular neighborhood A^r when $\operatorname{reach}_{\mu}(A) > 0$ for r small enough.

Antoine Commaret	Generalized Morse Theory	24 July 2023	34 / 39
------------------	--------------------------	--------------	---------

Proof

Proof Idea - Concept

X

 X^{-r}

Proof idea - Technique

$$X_c = \phi_c^{-1}(0)$$
 with $\phi_c = d_X + \max(f - c, 0)$

c regular value $\iff sep(\partial^* \phi_c(x), \{0\}) > 0$ uniformly in a small neighborhood of X_c .

 $f^{-1}(]-\infty,c])$

Proof

Proof idea - Technique

$$X_c^r = \phi_{c,r}^{-1}(0)$$
 with $\phi_{c,r} = d_{X^{-r}} + \max(f_r - c, 0)$

c regular value of $f_{|X} \implies \operatorname{sep}(\partial^* \phi_{c,r}(x), \{0\}) > 0$ uniformly in a small neighborhood of X_c^r containing X_c for r > 0 small enough.

\ n1	toir			ar	
7 TT T	DOTI.	-c	,,,,,		

Proof

Proof Idea

Thank you for listening!

